---
license: mit
license_link: https://huggingface.co./microsoft/Phi-3.5-MoE-instruct/resolve/main/LICENSE
language:
- multilingual
pipeline_tag: text-generation
tags:
- nlp
- code
- TensorBlock
- GGUF
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
library_name: transformers
base_model: microsoft/Phi-3.5-MoE-instruct
---
## microsoft/Phi-3.5-MoE-instruct - GGUF
This repo contains GGUF format model files for [microsoft/Phi-3.5-MoE-instruct](https://huggingface.co./microsoft/Phi-3.5-MoE-instruct).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit ec7f3ac](https://github.com/ggerganov/llama.cpp/commit/ec7f3ac9ab33e46b136eb5ab6a76c4d81f57c7f1).
## Prompt template
```
<|system|>
{system_prompt}<|end|>
<|user|>
{prompt}<|end|>
<|assistant|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Phi-3.5-MoE-instruct-Q2_K.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q2_K.gguf) | Q2_K | 15.265 GB | smallest, significant quality loss - not recommended for most purposes |
| [Phi-3.5-MoE-instruct-Q3_K_S.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q3_K_S.gguf) | Q3_K_S | 18.055 GB | very small, high quality loss |
| [Phi-3.5-MoE-instruct-Q3_K_M.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q3_K_M.gguf) | Q3_K_M | 20.033 GB | very small, high quality loss |
| [Phi-3.5-MoE-instruct-Q3_K_L.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q3_K_L.gguf) | Q3_K_L | 21.688 GB | small, substantial quality loss |
| [Phi-3.5-MoE-instruct-Q4_0.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q4_0.gguf) | Q4_0 | 23.599 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Phi-3.5-MoE-instruct-Q4_K_S.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q4_K_S.gguf) | Q4_K_S | 23.810 GB | small, greater quality loss |
| [Phi-3.5-MoE-instruct-Q4_K_M.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q4_K_M.gguf) | Q4_K_M | 25.346 GB | medium, balanced quality - recommended |
| [Phi-3.5-MoE-instruct-Q5_0.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q5_0.gguf) | Q5_0 | 28.816 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Phi-3.5-MoE-instruct-Q5_K_S.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q5_K_S.gguf) | Q5_K_S | 28.816 GB | large, low quality loss - recommended |
| [Phi-3.5-MoE-instruct-Q5_K_M.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q5_K_M.gguf) | Q5_K_M | 29.716 GB | large, very low quality loss - recommended |
| [Phi-3.5-MoE-instruct-Q6_K.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q6_K.gguf) | Q6_K | 34.359 GB | very large, extremely low quality loss |
| [Phi-3.5-MoE-instruct-Q8_0.gguf](https://huggingface.co./tensorblock/Phi-3.5-MoE-instruct-GGUF/blob/main/Phi-3.5-MoE-instruct-Q8_0.gguf) | Q8_0 | 44.500 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Phi-3.5-MoE-instruct-GGUF --include "Phi-3.5-MoE-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Phi-3.5-MoE-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```