--- license: apache-2.0 tags: - yi - moe - TensorBlock - GGUF base_model: cloudyu/Mixtral_34Bx2_MoE_60B model-index: - name: Mixtral_34Bx2_MoE_60B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 45.38 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 41.21 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.57 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 11.74 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 17.78 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 41.85 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## cloudyu/Mixtral_34Bx2_MoE_60B - GGUF This repo contains GGUF format model files for [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co./cloudyu/Mixtral_34Bx2_MoE_60B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mixtral_34Bx2_MoE_60B-Q2_K.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q2_K.gguf) | Q2_K | 22.394 GB | smallest, significant quality loss - not recommended for most purposes | | [Mixtral_34Bx2_MoE_60B-Q3_K_S.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q3_K_S.gguf) | Q3_K_S | 26.318 GB | very small, high quality loss | | [Mixtral_34Bx2_MoE_60B-Q3_K_M.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q3_K_M.gguf) | Q3_K_M | 29.237 GB | very small, high quality loss | | [Mixtral_34Bx2_MoE_60B-Q3_K_L.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q3_K_L.gguf) | Q3_K_L | 31.768 GB | small, substantial quality loss | | [Mixtral_34Bx2_MoE_60B-Q4_0.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q4_0.gguf) | Q4_0 | 34.334 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mixtral_34Bx2_MoE_60B-Q4_K_S.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q4_K_S.gguf) | Q4_K_S | 34.594 GB | small, greater quality loss | | [Mixtral_34Bx2_MoE_60B-Q4_K_M.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q4_K_M.gguf) | Q4_K_M | 36.661 GB | medium, balanced quality - recommended | | [Mixtral_34Bx2_MoE_60B-Q5_0.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q5_0.gguf) | Q5_0 | 41.878 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mixtral_34Bx2_MoE_60B-Q5_K_S.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q5_K_S.gguf) | Q5_K_S | 41.878 GB | large, low quality loss - recommended | | [Mixtral_34Bx2_MoE_60B-Q5_K_M.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q5_K_M.gguf) | Q5_K_M | 43.077 GB | large, very low quality loss - recommended | | [Mixtral_34Bx2_MoE_60B-Q6_K.gguf](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q6_K.gguf) | Q6_K | 49.893 GB | very large, extremely low quality loss | | [Mixtral_34Bx2_MoE_60B-Q8_0](https://huggingface.co./tensorblock/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/Mixtral_34Bx2_MoE_60B-Q8_0) | Q8_0 | 0.959 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mixtral_34Bx2_MoE_60B-GGUF --include "Mixtral_34Bx2_MoE_60B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mixtral_34Bx2_MoE_60B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```