File size: 7,651 Bytes
7977160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: other
tags:
- moe
- merge
- mergekit
- Mistral
- openchat/openchat-3.5-1210
- beowolx/CodeNinja-1.0-OpenChat-7B
- maywell/PiVoT-0.1-Starling-LM-RP
- WizardLM/WizardMath-7B-V1.1
- TensorBlock
- GGUF
license_name: microsoft-research-license
license_link: https://huggingface.co./WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE
base_model: mlabonne/Beyonder-4x7B-v2
model-index:
- name: Beyonder-4x7B-v2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.77
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.8
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.1
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 60.68
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 80.9
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 71.72
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Beyonder-4x7B-v2
      name: Open LLM Leaderboard
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## mlabonne/Beyonder-4x7B-v2 - GGUF

This repo contains GGUF format model files for [mlabonne/Beyonder-4x7B-v2](https://huggingface.co./mlabonne/Beyonder-4x7B-v2).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

<div style="text-align: left; margin: 20px 0;">
    <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
        Run them on the TensorBlock client using your local machine ↗
    </a>
</div>

## Prompt template

```
<s>GPT4 Correct System: {system_prompt}</s>GPT4 Correct User: {prompt}</s>GPT4 Correct Assistant:
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Beyonder-4x7B-v2-Q2_K.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q2_K.gguf) | Q2_K | 8.843 GB | smallest, significant quality loss - not recommended for most purposes |
| [Beyonder-4x7B-v2-Q3_K_S.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q3_K_S.gguf) | Q3_K_S | 10.433 GB | very small, high quality loss |
| [Beyonder-4x7B-v2-Q3_K_M.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q3_K_M.gguf) | Q3_K_M | 11.580 GB | very small, high quality loss |
| [Beyonder-4x7B-v2-Q3_K_L.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q3_K_L.gguf) | Q3_K_L | 12.544 GB | small, substantial quality loss |
| [Beyonder-4x7B-v2-Q4_0.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q4_0.gguf) | Q4_0 | 13.624 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Beyonder-4x7B-v2-Q4_K_S.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q4_K_S.gguf) | Q4_K_S | 13.743 GB | small, greater quality loss |
| [Beyonder-4x7B-v2-Q4_K_M.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q4_K_M.gguf) | Q4_K_M | 14.610 GB | medium, balanced quality - recommended |
| [Beyonder-4x7B-v2-Q5_0.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q5_0.gguf) | Q5_0 | 16.626 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Beyonder-4x7B-v2-Q5_K_S.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q5_K_S.gguf) | Q5_K_S | 16.626 GB | large, low quality loss - recommended |
| [Beyonder-4x7B-v2-Q5_K_M.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q5_K_M.gguf) | Q5_K_M | 17.134 GB | large, very low quality loss - recommended |
| [Beyonder-4x7B-v2-Q6_K.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q6_K.gguf) | Q6_K | 19.817 GB | very large, extremely low quality loss |
| [Beyonder-4x7B-v2-Q8_0.gguf](https://huggingface.co./tensorblock/Beyonder-4x7B-v2-GGUF/blob/main/Beyonder-4x7B-v2-Q8_0.gguf) | Q8_0 | 25.666 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/Beyonder-4x7B-v2-GGUF --include "Beyonder-4x7B-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/Beyonder-4x7B-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```