--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on pruned_datavq__ydnj to apply classification on is_phishing **Metrics of the best model:** accuracy 1.0 average_precision 1.0 roc_auc 1.0 recall_macro 1.0 f1_macro 1.0 Name: DecisionTreeClassifier(class_weight='balanced', max_depth=1), dtype: float64 **See model plot below:**
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=             continuous  dirty_float  low_card_int  ...   date  free_string  useless
id                 True        False         False  ...  False        False    False
bad_domain        False        False         False  ...  False         True    False
safe_domain       False        False         False  ...  False        False    False[3 rows x 7 columns])),('decisiontreeclassifier',DecisionTreeClassifier(class_weight='balanced', max_depth=1))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
**Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co./autotrain). **Logs of training** including the models tried in the process can be found in logs.txt