--- library_name: transformers license: llama3.2 base_model: tanliboy/llama-3.2-3b tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - tanliboy/OpenHermes-2.5-reformat model-index: - name: llama-3.2-3b-sft-2 results: [] --- # llama-3.2-3b-sft-2 This model is a fine-tuned version of [tanliboy/llama-3.2-3b](https://huggingface.co./tanliboy/llama-3.2-3b) on the tanliboy/OpenHermes-2.5-reformat dataset. It achieves the following results on the evaluation set: - Loss: 0.6744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.7792 | 0.0673 | 500 | 0.7726 | | 0.7496 | 0.1345 | 1000 | 0.7444 | | 0.7243 | 0.2018 | 1500 | 0.7296 | | 0.7178 | 0.2691 | 2000 | 0.7197 | | 0.7077 | 0.3363 | 2500 | 0.7127 | | 0.6992 | 0.4036 | 3000 | 0.7066 | | 0.6992 | 0.4708 | 3500 | 0.7012 | | 0.6945 | 0.5381 | 4000 | 0.6965 | | 0.6879 | 0.6054 | 4500 | 0.6920 | | 0.6901 | 0.6726 | 5000 | 0.6879 | | 0.6759 | 0.7399 | 5500 | 0.6844 | | 0.6752 | 0.8072 | 6000 | 0.6812 | | 0.6826 | 0.8744 | 6500 | 0.6783 | | 0.6804 | 0.9417 | 7000 | 0.6758 | | 0.6131 | 1.0089 | 7500 | 0.6764 | | 0.6012 | 1.0762 | 8000 | 0.6758 | | 0.6136 | 1.1435 | 8500 | 0.6751 | | 0.6127 | 1.2107 | 9000 | 0.6747 | | 0.6076 | 1.2780 | 9500 | 0.6745 | | 0.6033 | 1.3453 | 10000 | 0.6744 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1