--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized - tanliboy/orca_dpo_pairs model-index: - name: lambda-llama-3-8b-dpo-test-orca results: [] --- # lambda-llama-3-8b-dpo-test-orca This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the HuggingFaceH4/ultrafeedback_binarized and the tanliboy/orca_dpo_pairs datasets. It achieves the following results on the evaluation set: - Loss: 0.4795 - Rewards/chosen: -1.6860 - Rewards/rejected: -2.8132 - Rewards/accuracies: 0.7259 - Rewards/margins: 1.1272 - Logps/rejected: -645.5051 - Logps/chosen: -549.3651 - Logits/rejected: -2.6630 - Logits/chosen: -2.5985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6011 | 0.1744 | 100 | 0.5738 | -0.8770 | -1.2808 | 0.6988 | 0.4038 | -492.2603 | -468.4565 | -2.4544 | -2.4042 | | 0.5447 | 0.3489 | 200 | 0.5242 | -1.3236 | -2.0879 | 0.7289 | 0.7644 | -572.9752 | -513.1177 | -2.6319 | -2.5732 | | 0.5173 | 0.5233 | 300 | 0.5003 | -1.6828 | -2.6810 | 0.7259 | 0.9982 | -632.2809 | -549.0404 | -2.6140 | -2.5556 | | 0.5144 | 0.6978 | 400 | 0.4851 | -1.7107 | -2.8135 | 0.7319 | 1.1028 | -645.5279 | -551.8306 | -2.7027 | -2.6365 | | 0.5162 | 0.8722 | 500 | 0.4798 | -1.7085 | -2.8440 | 0.7259 | 1.1355 | -648.5815 | -551.6072 | -2.6442 | -2.5812 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1