Upload 7 files
Browse files- .gitattributes +5 -0
- SR_S2_FastModel/auxiliar_refsrx2.jit +3 -0
- SR_S2_FastModel/auxiliar_sr.jit +3 -0
- SR_S2_FastModel/example_data.safetensor +3 -0
- SR_S2_FastModel/load.py +624 -0
- SR_S2_FastModel/mlm.json +202 -0
- SR_S2_FastModel/model.jit +3 -0
- SR_S2_FastModel/model.safetensor +3 -0
.gitattributes
CHANGED
@@ -90,3 +90,8 @@ SR_S2_BestModel/auxiliar_refsrx2.safetensor filter=lfs diff=lfs merge=lfs -text
|
|
90 |
SR_S2_BestModel/auxiliar_sr.safetensor filter=lfs diff=lfs merge=lfs -text
|
91 |
SR_S2_BestModel/example_data.safetensor filter=lfs diff=lfs merge=lfs -text
|
92 |
SR_S2_BestModel/model.safetensor filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
90 |
SR_S2_BestModel/auxiliar_sr.safetensor filter=lfs diff=lfs merge=lfs -text
|
91 |
SR_S2_BestModel/example_data.safetensor filter=lfs diff=lfs merge=lfs -text
|
92 |
SR_S2_BestModel/model.safetensor filter=lfs diff=lfs merge=lfs -text
|
93 |
+
SR_S2_FastModel/auxiliar_refsrx2.jit filter=lfs diff=lfs merge=lfs -text
|
94 |
+
SR_S2_FastModel/auxiliar_sr.jit filter=lfs diff=lfs merge=lfs -text
|
95 |
+
SR_S2_FastModel/example_data.safetensor filter=lfs diff=lfs merge=lfs -text
|
96 |
+
SR_S2_FastModel/model.jit filter=lfs diff=lfs merge=lfs -text
|
97 |
+
SR_S2_FastModel/model.safetensor filter=lfs diff=lfs merge=lfs -text
|
SR_S2_FastModel/auxiliar_refsrx2.jit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a700df91e9eba64d0039f4ccd476c47bbf81e6a3e9749c13236aa0ef2eaec62
|
3 |
+
size 2532385
|
SR_S2_FastModel/auxiliar_sr.jit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d357606c29caffbee3316afd2badf2a2b2c289dd23a050d9d346201faf5c7a01
|
3 |
+
size 2561891
|
SR_S2_FastModel/example_data.safetensor
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7709dd46aabc069c2005f39ce830cb5659306a9c11221307557c56f6ed6cf65
|
3 |
+
size 13631584
|
SR_S2_FastModel/load.py
ADDED
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# I stole the code from here: https://github.com/hongyuanyu/SPAN
|
2 |
+
# The author of the code deserves all the credit. I just make
|
3 |
+
# basic modifications to make it work with my codebase.
|
4 |
+
|
5 |
+
|
6 |
+
from collections import OrderedDict
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
|
9 |
+
import safetensors.numpy
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch import nn
|
13 |
+
import safetensors.torch
|
14 |
+
import pathlib
|
15 |
+
|
16 |
+
|
17 |
+
def _make_pair(value: int) -> tuple:
|
18 |
+
"""
|
19 |
+
Converts a single integer into a tuple of the same integer repeated twice.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
value (int): Integer value to be converted.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
tuple: Tuple containing the integer repeated twice.
|
26 |
+
"""
|
27 |
+
if isinstance(value, int):
|
28 |
+
value = (value,) * 2
|
29 |
+
return value
|
30 |
+
|
31 |
+
|
32 |
+
def conv_layer(
|
33 |
+
in_channels: int, out_channels: int, kernel_size: int, bias: bool = True
|
34 |
+
) -> nn.Conv2d:
|
35 |
+
"""
|
36 |
+
Creates a 2D convolutional layer with adaptive padding.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
in_channels (int): Number of input channels.
|
40 |
+
out_channels (int): Number of output channels.
|
41 |
+
kernel_size (int): Size of the convolution kernel.
|
42 |
+
bias (bool, optional): Whether to include a bias term. Defaults to True.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
nn.Conv2d: 2D convolutional layer with calculated padding.
|
46 |
+
"""
|
47 |
+
kernel_size = _make_pair(kernel_size)
|
48 |
+
padding = (int((kernel_size[0] - 1) / 2), int((kernel_size[1] - 1) / 2))
|
49 |
+
return nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, bias=bias)
|
50 |
+
|
51 |
+
|
52 |
+
def activation(
|
53 |
+
act_type: str, inplace: bool = True, neg_slope: float = 0.05, n_prelu: int = 1
|
54 |
+
) -> nn.Module:
|
55 |
+
"""
|
56 |
+
Returns an activation layer based on the specified type.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
act_type (str): Type of activation ('relu', 'lrelu', 'prelu').
|
60 |
+
inplace (bool, optional): If True, performs the operation in-place. Defaults to True.
|
61 |
+
neg_slope (float, optional): Negative slope for 'lrelu' and 'prelu'. Defaults to 0.05.
|
62 |
+
n_prelu (int, optional): Number of parameters for 'prelu'. Defaults to 1.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
nn.Module: Activation layer.
|
66 |
+
"""
|
67 |
+
act_type = act_type.lower()
|
68 |
+
if act_type == "relu":
|
69 |
+
layer = nn.ReLU(inplace)
|
70 |
+
elif act_type == "lrelu":
|
71 |
+
layer = nn.LeakyReLU(neg_slope, inplace)
|
72 |
+
elif act_type == "prelu":
|
73 |
+
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
|
74 |
+
else:
|
75 |
+
raise NotImplementedError(
|
76 |
+
"activation layer [{:s}] is not found".format(act_type)
|
77 |
+
)
|
78 |
+
return layer
|
79 |
+
|
80 |
+
|
81 |
+
def sequential(*args) -> nn.Sequential:
|
82 |
+
"""
|
83 |
+
Constructs a sequential container for the provided modules.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
args: Modules in order of execution.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
nn.Sequential: A Sequential container.
|
90 |
+
"""
|
91 |
+
if len(args) == 1:
|
92 |
+
if isinstance(args[0], OrderedDict):
|
93 |
+
raise NotImplementedError("sequential does not support OrderedDict input.")
|
94 |
+
return args[0]
|
95 |
+
modules = []
|
96 |
+
for module in args:
|
97 |
+
if isinstance(module, nn.Sequential):
|
98 |
+
for submodule in module.children():
|
99 |
+
modules.append(submodule)
|
100 |
+
elif isinstance(module, nn.Module):
|
101 |
+
modules.append(module)
|
102 |
+
return nn.Sequential(*modules)
|
103 |
+
|
104 |
+
|
105 |
+
def pixelshuffle_block(
|
106 |
+
in_channels: int, out_channels: int, upscale_factor: int = 2, kernel_size: int = 3
|
107 |
+
) -> nn.Sequential:
|
108 |
+
"""
|
109 |
+
Creates an upsampling block using pixel shuffle.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
in_channels (int): Number of input channels.
|
113 |
+
out_channels (int): Number of output channels.
|
114 |
+
upscale_factor (int, optional): Factor by which to upscale. Defaults to 2.
|
115 |
+
kernel_size (int, optional): Size of the convolution kernel. Defaults to 3.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
nn.Sequential: Sequential block for upsampling.
|
119 |
+
"""
|
120 |
+
conv = conv_layer(in_channels, out_channels * (upscale_factor**2), kernel_size)
|
121 |
+
pixel_shuffle = nn.PixelShuffle(upscale_factor)
|
122 |
+
return sequential(conv, pixel_shuffle)
|
123 |
+
|
124 |
+
|
125 |
+
class Conv3XC(nn.Module):
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
c_in: int,
|
129 |
+
c_out: int,
|
130 |
+
gain1: int = 1,
|
131 |
+
s: int = 1,
|
132 |
+
bias: bool = True,
|
133 |
+
relu: bool = False,
|
134 |
+
train_mode: bool = True,
|
135 |
+
):
|
136 |
+
"""
|
137 |
+
Custom 3-stage convolutional block with optional ReLU activation and train/evaluation mode support.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
c_in (int): Number of input channels.
|
141 |
+
c_out (int): Number of output channels.
|
142 |
+
gain1 (int, optional): Gain multiplier for intermediate layers. Defaults to 1.
|
143 |
+
s (int, optional): Stride value for the convolutions. Defaults to 1.
|
144 |
+
bias (bool, optional): Whether to include a bias term in the convolutions. Defaults to True.
|
145 |
+
relu (bool, optional): If True, apply a LeakyReLU activation after the convolution. Defaults to False.
|
146 |
+
train_mode (bool, optional): If True, use training mode with learnable parameters. Defaults to True.
|
147 |
+
"""
|
148 |
+
super(Conv3XC, self).__init__()
|
149 |
+
self.train_mode = train_mode
|
150 |
+
self.weight_concat = None
|
151 |
+
self.bias_concat = None
|
152 |
+
self.update_params_flag = False
|
153 |
+
self.stride = s
|
154 |
+
self.has_relu = relu
|
155 |
+
gain = gain1
|
156 |
+
|
157 |
+
self.sk = nn.Conv2d(
|
158 |
+
in_channels=c_in,
|
159 |
+
out_channels=c_out,
|
160 |
+
kernel_size=1,
|
161 |
+
padding=0,
|
162 |
+
stride=s,
|
163 |
+
bias=bias,
|
164 |
+
)
|
165 |
+
self.conv = nn.Sequential(
|
166 |
+
nn.Conv2d(
|
167 |
+
in_channels=c_in,
|
168 |
+
out_channels=c_in * gain,
|
169 |
+
kernel_size=1,
|
170 |
+
padding=0,
|
171 |
+
bias=bias,
|
172 |
+
),
|
173 |
+
nn.Conv2d(
|
174 |
+
in_channels=c_in * gain,
|
175 |
+
out_channels=c_out * gain,
|
176 |
+
kernel_size=3,
|
177 |
+
stride=s,
|
178 |
+
padding=0,
|
179 |
+
bias=bias,
|
180 |
+
),
|
181 |
+
nn.Conv2d(
|
182 |
+
in_channels=c_out * gain,
|
183 |
+
out_channels=c_out,
|
184 |
+
kernel_size=1,
|
185 |
+
padding=0,
|
186 |
+
bias=bias,
|
187 |
+
),
|
188 |
+
)
|
189 |
+
|
190 |
+
self.eval_conv = nn.Conv2d(
|
191 |
+
in_channels=c_in,
|
192 |
+
out_channels=c_out,
|
193 |
+
kernel_size=3,
|
194 |
+
padding=1,
|
195 |
+
stride=s,
|
196 |
+
bias=bias,
|
197 |
+
)
|
198 |
+
self.eval_conv.weight.requires_grad = False
|
199 |
+
self.eval_conv.bias.requires_grad = False
|
200 |
+
if not self.train_mode:
|
201 |
+
self.update_params()
|
202 |
+
|
203 |
+
def update_params(self):
|
204 |
+
"""
|
205 |
+
Updates the parameters for evaluation mode by combining weights from the convolution layers.
|
206 |
+
"""
|
207 |
+
w1 = self.conv[0].weight.data.clone().detach()
|
208 |
+
b1 = self.conv[0].bias.data.clone().detach()
|
209 |
+
w2 = self.conv[1].weight.data.clone().detach()
|
210 |
+
b2 = self.conv[1].bias.data.clone().detach()
|
211 |
+
w3 = self.conv[2].weight.data.clone().detach()
|
212 |
+
b3 = self.conv[2].bias.data.clone().detach()
|
213 |
+
|
214 |
+
w = (
|
215 |
+
F.conv2d(w1.flip(2, 3).permute(1, 0, 2, 3), w2, padding=2, stride=1)
|
216 |
+
.flip(2, 3)
|
217 |
+
.permute(1, 0, 2, 3)
|
218 |
+
)
|
219 |
+
b = (w2 * b1.reshape(1, -1, 1, 1)).sum((1, 2, 3)) + b2
|
220 |
+
|
221 |
+
self.weight_concat = (
|
222 |
+
F.conv2d(w.flip(2, 3).permute(1, 0, 2, 3), w3, padding=0, stride=1)
|
223 |
+
.flip(2, 3)
|
224 |
+
.permute(1, 0, 2, 3)
|
225 |
+
)
|
226 |
+
self.bias_concat = (w3 * b.reshape(1, -1, 1, 1)).sum((1, 2, 3)) + b3
|
227 |
+
|
228 |
+
sk_w = self.sk.weight.data.clone().detach()
|
229 |
+
sk_b = self.sk.bias.data.clone().detach()
|
230 |
+
target_kernel_size = 3
|
231 |
+
|
232 |
+
H_pixels_to_pad = (target_kernel_size - 1) // 2
|
233 |
+
W_pixels_to_pad = (target_kernel_size - 1) // 2
|
234 |
+
sk_w = F.pad(
|
235 |
+
sk_w, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad]
|
236 |
+
)
|
237 |
+
|
238 |
+
self.weight_concat = self.weight_concat + sk_w
|
239 |
+
self.bias_concat = self.bias_concat + sk_b
|
240 |
+
|
241 |
+
self.eval_conv.weight.data = self.weight_concat
|
242 |
+
self.eval_conv.bias.data = self.bias_concat
|
243 |
+
|
244 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
245 |
+
"""
|
246 |
+
Forward pass of the convolution block.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
x (torch.Tensor): Input tensor.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
torch.Tensor: Output tensor after convolution and optional activation.
|
253 |
+
"""
|
254 |
+
if self.train_mode:
|
255 |
+
pad = 1
|
256 |
+
x_pad = F.pad(x, (pad, pad, pad, pad), "constant", 0)
|
257 |
+
out = self.conv(x_pad) + self.sk(x)
|
258 |
+
else:
|
259 |
+
self.update_params()
|
260 |
+
out = self.eval_conv(x)
|
261 |
+
|
262 |
+
if self.has_relu:
|
263 |
+
out = F.leaky_relu(out, negative_slope=0.05)
|
264 |
+
return out
|
265 |
+
|
266 |
+
|
267 |
+
class SPAB(nn.Module):
|
268 |
+
def __init__(
|
269 |
+
self,
|
270 |
+
in_channels: int,
|
271 |
+
mid_channels: Optional[int] = None,
|
272 |
+
out_channels: Optional[int] = None,
|
273 |
+
train_mode: bool = True,
|
274 |
+
bias: bool = False,
|
275 |
+
):
|
276 |
+
"""
|
277 |
+
Self-parameterized attention block (SPAB) with multiple convolution layers.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
in_channels (int): Number of input channels.
|
281 |
+
mid_channels (Optional[int], optional): Number of middle channels. Defaults to in_channels.
|
282 |
+
out_channels (Optional[int], optional): Number of output channels. Defaults to in_channels.
|
283 |
+
train_mode (bool, optional): Indicates if the block is in training mode. Defaults to True.
|
284 |
+
bias (bool, optional): Include bias in convolutions. Defaults to False.
|
285 |
+
"""
|
286 |
+
super(SPAB, self).__init__()
|
287 |
+
if mid_channels is None:
|
288 |
+
mid_channels = in_channels
|
289 |
+
if out_channels is None:
|
290 |
+
out_channels = in_channels
|
291 |
+
|
292 |
+
self.in_channels = in_channels
|
293 |
+
self.c1_r = Conv3XC(
|
294 |
+
in_channels, mid_channels, gain1=2, s=1, train_mode=train_mode
|
295 |
+
)
|
296 |
+
self.c2_r = Conv3XC(
|
297 |
+
mid_channels, mid_channels, gain1=2, s=1, train_mode=train_mode
|
298 |
+
)
|
299 |
+
self.c3_r = Conv3XC(
|
300 |
+
mid_channels, out_channels, gain1=2, s=1, train_mode=train_mode
|
301 |
+
)
|
302 |
+
self.act1 = torch.nn.SiLU(inplace=True)
|
303 |
+
self.act2 = activation("lrelu", neg_slope=0.1, inplace=True)
|
304 |
+
|
305 |
+
def forward(self, x: torch.Tensor) -> tuple:
|
306 |
+
"""
|
307 |
+
Forward pass of the SPAB block.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
x (torch.Tensor): Input tensor.
|
311 |
+
|
312 |
+
Returns:
|
313 |
+
tuple: (Output tensor, intermediate tensor, attention map).
|
314 |
+
"""
|
315 |
+
out1 = self.c1_r(x)
|
316 |
+
out1_act = self.act1(out1)
|
317 |
+
|
318 |
+
out2 = self.c2_r(out1_act)
|
319 |
+
out2_act = self.act1(out2)
|
320 |
+
|
321 |
+
out3 = self.c3_r(out2_act)
|
322 |
+
|
323 |
+
sim_att = torch.sigmoid(out3) - 0.5
|
324 |
+
out = (out3 + x) * sim_att
|
325 |
+
|
326 |
+
return out, out1, sim_att
|
327 |
+
|
328 |
+
|
329 |
+
class CNNSR(nn.Module):
|
330 |
+
"""
|
331 |
+
Swift Parameter-free Attention Network (SPAN) for efficient super-resolution
|
332 |
+
with deeper layers and channel attention.
|
333 |
+
"""
|
334 |
+
|
335 |
+
def __init__(
|
336 |
+
self,
|
337 |
+
in_channels: int,
|
338 |
+
out_channels: int,
|
339 |
+
feature_channels: int = 48,
|
340 |
+
upscale: int = 4,
|
341 |
+
bias: bool = True,
|
342 |
+
train_mode: bool = True,
|
343 |
+
num_blocks: int = 10,
|
344 |
+
**kwargs,
|
345 |
+
):
|
346 |
+
"""
|
347 |
+
Initializes the CNNSR model.
|
348 |
+
|
349 |
+
Args:
|
350 |
+
in_channels (int): Number of input channels.
|
351 |
+
out_channels (int): Number of output channels.
|
352 |
+
feature_channels (int, optional): Number of feature channels. Defaults to 48.
|
353 |
+
upscale (int, optional): Upscaling factor. Defaults to 4.
|
354 |
+
bias (bool, optional): Whether to include a bias term. Defaults to True.
|
355 |
+
train_mode (bool, optional): If True, the model is in training mode. Defaults to True.
|
356 |
+
num_blocks (int, optional): Number of attention blocks in the network. Defaults to 10.
|
357 |
+
"""
|
358 |
+
super(CNNSR, self).__init__()
|
359 |
+
|
360 |
+
# Initial Convolution
|
361 |
+
self.conv_1 = Conv3XC(
|
362 |
+
in_channels, feature_channels, gain1=2, s=1, train_mode=train_mode
|
363 |
+
)
|
364 |
+
|
365 |
+
# Deeper Blocks
|
366 |
+
self.blocks = nn.ModuleList(
|
367 |
+
[
|
368 |
+
SPAB(feature_channels, bias=bias, train_mode=train_mode)
|
369 |
+
for _ in range(num_blocks)
|
370 |
+
]
|
371 |
+
)
|
372 |
+
|
373 |
+
# Convolution after attention blocks
|
374 |
+
self.conv_cat = conv_layer(
|
375 |
+
feature_channels * 4, feature_channels, kernel_size=1, bias=True
|
376 |
+
)
|
377 |
+
self.conv_2 = Conv3XC(
|
378 |
+
feature_channels, feature_channels, gain1=2, s=1, train_mode=train_mode
|
379 |
+
)
|
380 |
+
|
381 |
+
# Upsampling
|
382 |
+
self.upsampler = pixelshuffle_block(
|
383 |
+
feature_channels, out_channels, upscale_factor=upscale
|
384 |
+
)
|
385 |
+
|
386 |
+
def forward(
|
387 |
+
self, x: torch.Tensor, save_attentions: Optional[List[int]] = None
|
388 |
+
) -> Union[torch.Tensor, tuple]:
|
389 |
+
"""
|
390 |
+
Forward pass of the CNNSR model.
|
391 |
+
|
392 |
+
Args:
|
393 |
+
x (torch.Tensor): Input tensor.
|
394 |
+
save_attentions (Optional[List[int]], optional): List of block indices from which to save attention maps.
|
395 |
+
|
396 |
+
Returns:
|
397 |
+
torch.Tensor: Super-resolved output.
|
398 |
+
tuple: If save_attentions is specified, returns (output tensor, attention maps).
|
399 |
+
"""
|
400 |
+
# Initial Convolution
|
401 |
+
out_feature = self.conv_1(x)
|
402 |
+
|
403 |
+
# Pass through all blocks, accumulating attention outputs
|
404 |
+
attentions = []
|
405 |
+
for index, block in enumerate(self.blocks):
|
406 |
+
out, out2, att = block(out_feature)
|
407 |
+
|
408 |
+
# Save the first residual block output
|
409 |
+
if index == 0:
|
410 |
+
out_b1 = out
|
411 |
+
|
412 |
+
# Save the last residual block output
|
413 |
+
if index == len(self.blocks) - 1:
|
414 |
+
out_blast = out2
|
415 |
+
|
416 |
+
# Save attention if needed
|
417 |
+
if save_attentions is not None and index in save_attentions:
|
418 |
+
attentions.append(att)
|
419 |
+
|
420 |
+
# Final Convolution and concatenation
|
421 |
+
out_bn = self.conv_2(out)
|
422 |
+
out = self.conv_cat(torch.cat([out_feature, out_bn, out_b1, out_blast], 1))
|
423 |
+
|
424 |
+
# Upsample
|
425 |
+
output = self.upsampler(out)
|
426 |
+
|
427 |
+
if save_attentions is not None:
|
428 |
+
return output, attentions
|
429 |
+
return output
|
430 |
+
|
431 |
+
|
432 |
+
def butterworth_filter(shape: tuple[int, int], cutoff: int, order: int) -> torch.Tensor:
|
433 |
+
"""
|
434 |
+
Creates a Butterworth low-pass filter.
|
435 |
+
|
436 |
+
Args:
|
437 |
+
shape: (rows, cols) of the filter.
|
438 |
+
cutoff: Cutoff frequency.
|
439 |
+
order: Order of the Butterworth filter.
|
440 |
+
|
441 |
+
Returns:
|
442 |
+
torch.Tensor: Normalized Butterworth filter.
|
443 |
+
"""
|
444 |
+
rows, cols = shape
|
445 |
+
crow, ccol = rows // 2, cols // 2
|
446 |
+
filter = torch.zeros((rows, cols), dtype=torch.float32)
|
447 |
+
for u in range(rows):
|
448 |
+
for v in range(cols):
|
449 |
+
distance = ((u - crow) ** 2 + (v - ccol) ** 2) ** 0.5
|
450 |
+
filter[u, v] = 1 / (1 + (distance / cutoff) ** (2 * order))
|
451 |
+
filter /= filter.sum()
|
452 |
+
return filter
|
453 |
+
|
454 |
+
|
455 |
+
class CNNHardConstraint(nn.Module):
|
456 |
+
"""
|
457 |
+
Applies a convolutional hard constraint using predefined filters for low-pass and high-pass filtering.
|
458 |
+
|
459 |
+
Args:
|
460 |
+
filter_method: The type of filter to apply ('ideal', 'butterworth', 'gaussian', 'sigmoid').
|
461 |
+
filter_hyperparameters: Dictionary containing hyperparameters specific to the chosen filter method.
|
462 |
+
scale_factor: Scaling factor used to determine kernel size and cutoff frequency.
|
463 |
+
in_channels: Number of input channels.
|
464 |
+
out_channels: List of channels to be processed (default is [0, 1, 2, 3, 4, 5]).
|
465 |
+
"""
|
466 |
+
|
467 |
+
def __init__(
|
468 |
+
self,
|
469 |
+
scale_factor: int,
|
470 |
+
in_channels: int,
|
471 |
+
out_channels: list = [0, 1, 2, 3, 4, 5],
|
472 |
+
):
|
473 |
+
super().__init__()
|
474 |
+
|
475 |
+
self.in_channels = in_channels
|
476 |
+
|
477 |
+
# Estimate the kernel according to the scale
|
478 |
+
kernel_size = scale_factor * 3 + 1
|
479 |
+
cutoff = scale_factor * 2
|
480 |
+
|
481 |
+
# Define the convolution layer with multiple input and output channels
|
482 |
+
self.conv = nn.Conv2d(
|
483 |
+
in_channels=in_channels,
|
484 |
+
out_channels=len(out_channels),
|
485 |
+
kernel_size=kernel_size,
|
486 |
+
padding=kernel_size // 2,
|
487 |
+
bias=False,
|
488 |
+
groups=in_channels,
|
489 |
+
)
|
490 |
+
|
491 |
+
# Remove the gradient for the filter weights
|
492 |
+
self.conv.weight.requires_grad = False
|
493 |
+
|
494 |
+
# Initialize the filter kernel based on the filter method
|
495 |
+
# hyperparameters["order"] = 6
|
496 |
+
weight_data = butterworth_filter((kernel_size, kernel_size), cutoff, 6)
|
497 |
+
|
498 |
+
# Apply the same filter to all input channels
|
499 |
+
self.conv.weight.data = (
|
500 |
+
weight_data.unsqueeze(0).unsqueeze(0).repeat(in_channels, 1, 1, 1)
|
501 |
+
)
|
502 |
+
self.out_channels = out_channels
|
503 |
+
|
504 |
+
def forward(self, lr: torch.Tensor, sr: torch.Tensor) -> torch.Tensor:
|
505 |
+
"""
|
506 |
+
Applies the filter constraint on the super-resolution image.
|
507 |
+
|
508 |
+
Args:
|
509 |
+
lr: Low-resolution input tensor.
|
510 |
+
sr: Super-resolution output tensor.
|
511 |
+
|
512 |
+
Returns:
|
513 |
+
torch.Tensor: The resulting hybrid image after applying the constraint.
|
514 |
+
"""
|
515 |
+
# Upsample the LR image to the size of SR
|
516 |
+
lr = lr[:, self.out_channels]
|
517 |
+
|
518 |
+
# Upsample the LR image to the size of SR
|
519 |
+
lr_up = F.interpolate(lr, size=sr.shape[-2:], mode="bicubic", antialias=True)
|
520 |
+
|
521 |
+
# Apply the convolutional filter to both LR and SR images
|
522 |
+
lr_filtered = self.conv(lr_up)
|
523 |
+
sr_filtered = self.conv(sr)
|
524 |
+
|
525 |
+
# Combine low-pass and high-pass components
|
526 |
+
hybrid_image = lr_filtered + (sr - sr_filtered)
|
527 |
+
|
528 |
+
return hybrid_image
|
529 |
+
|
530 |
+
|
531 |
+
class HardConstraintModel(torch.nn.Module):
|
532 |
+
def __init__(self, sr_model_rgbn, sr_model_rswir):
|
533 |
+
super().__init__()
|
534 |
+
params = {
|
535 |
+
"in_channels": 10,
|
536 |
+
"out_channels": 6,
|
537 |
+
"feature_channels": 24,
|
538 |
+
"upscale": 1,
|
539 |
+
"bias": True,
|
540 |
+
"train_mode": True,
|
541 |
+
"num_blocks": 6,
|
542 |
+
}
|
543 |
+
self.sr_model = CNNSR(**params)
|
544 |
+
self.hard_constraint = CNNHardConstraint(2, 6, [0, 1, 2, 3, 4, 5])
|
545 |
+
|
546 |
+
# Load the model and freeze the parameters
|
547 |
+
self.sr_model_rgbn = torch.jit.load(sr_model_rgbn)
|
548 |
+
self.sr_model_rgbn.eval()
|
549 |
+
for param in self.sr_model_rgbn.parameters():
|
550 |
+
param.requires_grad = False
|
551 |
+
|
552 |
+
self.sr_model_rswir = torch.jit.load(sr_model_rswir)
|
553 |
+
self.sr_model_rswir.eval()
|
554 |
+
for param in self.sr_model_rswir.parameters():
|
555 |
+
param.requires_grad = False
|
556 |
+
|
557 |
+
|
558 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
559 |
+
# Band Selection
|
560 |
+
bands_20m = [3, 4, 5, 7, 8, 9]
|
561 |
+
bands_10m = [2, 1, 0, 6] # WARNING: The SR model needs RGBNIR bands? why? because i'm stupid
|
562 |
+
|
563 |
+
# Run Referece SR in the RSWIR bands (from 20m to 10m)
|
564 |
+
allbands10m = self.sr_model_rswir(x)
|
565 |
+
|
566 |
+
# Convert the SWIR bands to 2.5m
|
567 |
+
rsiwr_10m = allbands10m[:, bands_20m]
|
568 |
+
rsiwr_2dot5m_billinear = torch.nn.functional.interpolate(
|
569 |
+
rsiwr_10m, scale_factor=4, mode="bilinear", antialias=True
|
570 |
+
)
|
571 |
+
|
572 |
+
# Run SR in the RGBN bands (from 10m to 2.5m)
|
573 |
+
rgbn_2dot5m = self.sr_model_rgbn(x[:, bands_10m])
|
574 |
+
|
575 |
+
# Reorder the bands from RGBNIR to BGRNIR
|
576 |
+
rgbn_2dot5m = rgbn_2dot5m[:, [2, 1, 0, 3]]
|
577 |
+
|
578 |
+
# Run the fusion x4 model in the SWIR bands (10m to 2.5m)
|
579 |
+
input_data = torch.cat([rsiwr_2dot5m_billinear, rgbn_2dot5m], dim=1)
|
580 |
+
rsiwr_2dot5m_sr = self.hard_constraint(rsiwr_2dot5m_billinear, self.sr_model(input_data))
|
581 |
+
|
582 |
+
# Order the channels back
|
583 |
+
results = torch.stack(
|
584 |
+
[
|
585 |
+
rgbn_2dot5m[:, 0],
|
586 |
+
rgbn_2dot5m[:, 1],
|
587 |
+
rgbn_2dot5m[:, 2],
|
588 |
+
rsiwr_2dot5m_sr[:, 0],
|
589 |
+
rsiwr_2dot5m_sr[:, 1],
|
590 |
+
rsiwr_2dot5m_sr[:, 2],
|
591 |
+
rgbn_2dot5m[:, 3],
|
592 |
+
rsiwr_2dot5m_sr[:, 3],
|
593 |
+
rsiwr_2dot5m_sr[:, 4],
|
594 |
+
rsiwr_2dot5m_sr[:, 5],
|
595 |
+
],
|
596 |
+
dim=1,
|
597 |
+
)
|
598 |
+
|
599 |
+
return results
|
600 |
+
|
601 |
+
|
602 |
+
# MLSTAC API -----------------------------------------------------------------------
|
603 |
+
def example_data(path: pathlib.Path, *args, **kwargs):
|
604 |
+
data_file = path / "example_data.safetensor"
|
605 |
+
# Select only 10 meters and 20 meters bands
|
606 |
+
# B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12
|
607 |
+
bands = [1, 2, 3, 4, 5, 6, 7, 8, 11, 12]
|
608 |
+
return safetensors.torch.load_file(data_file)["example_data"][bands, 128:384, 128:384][None]
|
609 |
+
|
610 |
+
def trainable_model(path, *args, **kwargs):
|
611 |
+
# from 10m to 2.5m (RGBN)
|
612 |
+
sr_model_rgbn = path / "auxiliar_sr.jit"
|
613 |
+
|
614 |
+
# from 20m to 10m (RSWIR)
|
615 |
+
sr_model_rswir = path / "auxiliar_refsrx2.jit"
|
616 |
+
|
617 |
+
# Load model parameters from 10m to 2.5m (RSWIR)
|
618 |
+
weights = safetensors.torch.load_file(path / "model.safetensor")
|
619 |
+
|
620 |
+
# Load model
|
621 |
+
srmodel = HardConstraintModel(sr_model_rgbn=sr_model_rgbn, sr_model_rswir=sr_model_rswir)
|
622 |
+
srmodel.sr_model.load_state_dict(weights)
|
623 |
+
|
624 |
+
return srmodel
|
SR_S2_FastModel/mlm.json
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"type": "Feature",
|
3 |
+
"stac_version": "1.1.0",
|
4 |
+
"stac_extensions": [
|
5 |
+
"https://stac-extensions.github.io/mlm/v1.4.0/schema.json"
|
6 |
+
],
|
7 |
+
"id": "SPAN model",
|
8 |
+
"geometry": {
|
9 |
+
"type": "Polygon",
|
10 |
+
"coordinates": [
|
11 |
+
[
|
12 |
+
[
|
13 |
+
-180.0,
|
14 |
+
-90.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
-180.0,
|
18 |
+
90.0
|
19 |
+
],
|
20 |
+
[
|
21 |
+
180.0,
|
22 |
+
90.0
|
23 |
+
],
|
24 |
+
[
|
25 |
+
180.0,
|
26 |
+
-90.0
|
27 |
+
],
|
28 |
+
[
|
29 |
+
-180.0,
|
30 |
+
-90.0
|
31 |
+
]
|
32 |
+
]
|
33 |
+
]
|
34 |
+
},
|
35 |
+
"bbox": [
|
36 |
+
-180,
|
37 |
+
-90,
|
38 |
+
180,
|
39 |
+
90
|
40 |
+
],
|
41 |
+
"properties": {
|
42 |
+
"start_datetime": "1900-01-01T00:00:00Z",
|
43 |
+
"end_datetime": "9999-01-01T00:00:00Z",
|
44 |
+
"description": "A Swift Parameter-free Attention Network (SPAN). The model was trained using the CloudSEN12+ dataset.",
|
45 |
+
"forward_backward_pass": {
|
46 |
+
"32": 24.593536,
|
47 |
+
"64": 96.375936,
|
48 |
+
"128": 381.5968,
|
49 |
+
"256": 1518.662784,
|
50 |
+
"512": 6059.291776
|
51 |
+
},
|
52 |
+
"dependencies": [
|
53 |
+
"torch",
|
54 |
+
"safetensors.torch"
|
55 |
+
],
|
56 |
+
"mlm:framework": "pytorch",
|
57 |
+
"mlm:framework_version": "2.1.2+cu121",
|
58 |
+
"file:size": 1861672,
|
59 |
+
"mlm:memory_size": 1,
|
60 |
+
"mlm:accelerator": "cuda",
|
61 |
+
"mlm:accelerator_constrained": false,
|
62 |
+
"mlm:accelerator_summary": "Unknown",
|
63 |
+
"mlm:name": "CNN_Light_F4",
|
64 |
+
"mlm:architecture": "SPAN",
|
65 |
+
"mlm:tasks": [
|
66 |
+
"super-resolution"
|
67 |
+
],
|
68 |
+
"mlm:input": [
|
69 |
+
{
|
70 |
+
"name": "Sentinel-2 10m converted 2.5m and 20m bands converted to 10m",
|
71 |
+
"bands": [
|
72 |
+
"B02",
|
73 |
+
"B03",
|
74 |
+
"B04",
|
75 |
+
"B05",
|
76 |
+
"B06",
|
77 |
+
"B07",
|
78 |
+
"B08",
|
79 |
+
"B8A",
|
80 |
+
"B11",
|
81 |
+
"B12"
|
82 |
+
],
|
83 |
+
"input": {
|
84 |
+
"shape": [
|
85 |
+
-1,
|
86 |
+
10,
|
87 |
+
128,
|
88 |
+
128
|
89 |
+
],
|
90 |
+
"dim_order": [
|
91 |
+
"batch",
|
92 |
+
"channel",
|
93 |
+
"height",
|
94 |
+
"width"
|
95 |
+
],
|
96 |
+
"data_type": "float16"
|
97 |
+
},
|
98 |
+
"pre_processing_function": null
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"mlm:output": [
|
102 |
+
{
|
103 |
+
"name": "super-resolution",
|
104 |
+
"tasks": [
|
105 |
+
"super-resolution"
|
106 |
+
],
|
107 |
+
"result": {
|
108 |
+
"shape": [
|
109 |
+
-1,
|
110 |
+
10,
|
111 |
+
512,
|
112 |
+
512
|
113 |
+
],
|
114 |
+
"dim_order": [
|
115 |
+
"batch",
|
116 |
+
"channel",
|
117 |
+
"height",
|
118 |
+
"width"
|
119 |
+
],
|
120 |
+
"data_type": "float16"
|
121 |
+
},
|
122 |
+
"classification:classes": [],
|
123 |
+
"post_processing_function": null
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"mlm:total_parameters": 465418,
|
127 |
+
"mlm:pretrained": true,
|
128 |
+
"datetime": null
|
129 |
+
},
|
130 |
+
"links": [],
|
131 |
+
"assets": {
|
132 |
+
"auxiliar_sr": {
|
133 |
+
"href": "https://huggingface.co/tacofoundation/mlstac/resolve/main/CNN_Light_F4/auxiliar_sr.jit",
|
134 |
+
"type": "application/octet-stream; application=safetensor",
|
135 |
+
"title": "Torchscript model",
|
136 |
+
"description": "A Swift Parameter-free Attention Network (SPAN). The model was trained using the CloudSEN12+ dataset.The model can convert RGBN bands from 10m to 2.5m resolution.",
|
137 |
+
"mlm:artifact_type": "torch.jit.save",
|
138 |
+
"roles": [
|
139 |
+
"mlm:model",
|
140 |
+
"mlm:weights",
|
141 |
+
"data"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
"auxiliar_refsrx2": {
|
145 |
+
"href": "https://huggingface.co/tacofoundation/mlstac/resolve/main/CNN_Light_F4/auxiliar_refsrx2.jit",
|
146 |
+
"type": "application/octet-stream; application=safetensor",
|
147 |
+
"title": "Torchscript model",
|
148 |
+
"description": "A Swift Parameter-free Attention Network (SPAN). The model was trained using the CloudSEN12+ dataset.The model can convert RSWIR bands from 20m to 10m resolution.",
|
149 |
+
"mlm:artifact_type": "torch.jit.save",
|
150 |
+
"roles": [
|
151 |
+
"mlm:model",
|
152 |
+
"mlm:weights",
|
153 |
+
"data"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"trainable": {
|
157 |
+
"href": "https://huggingface.co/tacofoundation/mlstac/resolve/main/CNN_Light_F4/model.safetensor",
|
158 |
+
"type": "application/octet-stream; application=safetensor",
|
159 |
+
"title": "Pytorch weights checkpoint",
|
160 |
+
"description": "A Swift Parameter-free Attention Network (SPAN). The model was trained using the CloudSEN12+ dataset.",
|
161 |
+
"mlm:artifact_type": "safetensor.torch.save_file",
|
162 |
+
"roles": [
|
163 |
+
"mlm:model",
|
164 |
+
"mlm:weights",
|
165 |
+
"data"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
"compile": {
|
169 |
+
"href": "https://huggingface.co/tacofoundation/mlstac/resolve/main/CNN_Light_F4/model.jit",
|
170 |
+
"type": "application/octet-stream; application=pytorch",
|
171 |
+
"title": "Torchscript model",
|
172 |
+
"description": "A Swift Parameter-free Attention Network (SPAN). The model was trained using the CloudSEN12+ dataset.",
|
173 |
+
"mlm:artifact_type": "torch.jit.save",
|
174 |
+
"roles": [
|
175 |
+
"mlm:model",
|
176 |
+
"mlm:weights",
|
177 |
+
"data"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
"source_code": {
|
181 |
+
"href": "https://huggingface.co/tacofoundation/mlstac/resolve/main/CNN_Light_F4/load.py",
|
182 |
+
"type": "text/x-python",
|
183 |
+
"title": "Model load script",
|
184 |
+
"description": "Source code to run the model.",
|
185 |
+
"roles": [
|
186 |
+
"mlm:source_code",
|
187 |
+
"code"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
"example_data": {
|
191 |
+
"href": "https://huggingface.co/tacofoundation/mlstac/resolve/main/CNN_Light_F4/example_data.safetensor",
|
192 |
+
"type": "application/octet-stream; application=safetensors",
|
193 |
+
"title": "Example Sentinel-2 image",
|
194 |
+
"description": "Example Sentinel-2 image for model inference.",
|
195 |
+
"roles": [
|
196 |
+
"mlm:example_data",
|
197 |
+
"data"
|
198 |
+
]
|
199 |
+
}
|
200 |
+
},
|
201 |
+
"collection": "ml-model"
|
202 |
+
}
|
SR_S2_FastModel/model.jit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3305cb8a07b1e2fdd4e05c25f4a2de883ba71f56f408510699e598c10cd86568
|
3 |
+
size 7604602
|
SR_S2_FastModel/model.safetensor
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f45c99af1d08408cb622ba02d1aeadaab2ca964f08991feeb4fd7ffd5197f59d
|
3 |
+
size 2285088
|