File size: 7,479 Bytes
ca11402 5f15a9c ca11402 5f15a9c 1358ae5 d655d05 1358ae5 76cd82e dd4bb27 1358ae5 5980166 1358ae5 5980166 1358ae5 27d4a20 1358ae5 733981d 1358ae5 27d4a20 1358ae5 27d4a20 1358ae5 5f15a9c 451b022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
---
language:
- en
license: mit
library_name: transformers
tags:
- reasoning
- axolotl
- r1
base_model:
- meta-llama/Llama-3.2-3B-Instruct
datasets:
- ServiceNow-AI/R1-Distill-SFT
pipeline_tag: text-generation
model-index:
- name: DeepSeek-R1-Distill-Llama-3B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 70.93
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/DeepSeek-R1-Distill-Llama-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 21.45
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/DeepSeek-R1-Distill-Llama-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 20.92
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/DeepSeek-R1-Distill-Llama-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.45
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/DeepSeek-R1-Distill-Llama-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.91
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/DeepSeek-R1-Distill-Llama-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 21.98
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/DeepSeek-R1-Distill-Llama-3B
name: Open LLM Leaderboard
---
# DeepSeek-R1-Distill-Llama-3B
This model is the distilled version of DeepSeek-R1 on Llama-3.2-3B with R1-Distill-SFT dataset.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
```yaml
base_model: unsloth/Llama-3.2-3B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: llama3
datasets:
- path: ./custom_dataset.json
type: chat_template
conversation: chatml
ds_type: json
add_bos_token: true
add_eos_token: true
use_default_system_prompt: false
special_tokens:
bos_token: "<|begin_of_text|>"
eos_token: "<|eot_id|>"
pad_token: "<|eot_id|>"
additional_special_tokens:
- "<|begin_of_text|>"
- "<|eot_id|>"
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
hub_model_id: suayptalha/DeepSeek-R1-Distill-Llama-3B
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
micro_batch_size: 2
gradient_accumulation_steps: 8
num_epochs: 1
learning_rate: 2e-5
optimizer: paged_adamw_8bit
lr_scheduler: cosine
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
flash_attention: false
logging_steps: 50
warmup_steps: 100
saves_per_epoch: 1
output_dir: ./finetune-sft-results
save_safetensors: true
```
</details><br>
# Prompt Template
You can use Llama3 prompt template while using the model:
### Llama3
```
<|start_header_id|>system<|end_header_id|>
{system}<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{user}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
{assistant}<|eot_id|>
```
## Example usage:
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"suayptalha/DeepSeek-R1-Distill-Llama-3B",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("suayptalha/DeepSeek-R1-Distill-Llama-3B")
SYSTEM_PROMPT = """Respond in the following format:
<think>
You should reason between these tags.
</think>
Answer goes here...
Always use <think> </think> tags even if they are not necessary.
"""
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": "Which one is larger? 9.11 or 9.9?"},
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True,
return_tensors = "pt",
).to("cuda")
output = model.generate(input_ids=inputs, max_new_tokens=256, use_cache=True, temperature=0.7)
decoded_output = tokenizer.decode(output[0], skip_special_tokens=False)
print(decoded_output)
```
## Output:
```
<think>
First, I need to compare the two numbers 9.11 and 9.9.
Next, I'll analyze each number. The first digit after the decimal point in 9.11 is 1, and in 9.9, it's 9.
Since 9 is greater than 1, 9.9 is larger than 9.11.
</think>
To determine which number is larger, let's compare the two numbers:
**9.11** and **9.9**
1. **Identify the Decimal Places:**
- Both numbers have two decimal places.
2. **Compare the Tens Place (Right of the Decimal Point):**
- **9.11:** The tens place is 1.
- **9.9:** The tens place is 9.
3. **Conclusion:**
- Since 9 is greater than 1, the number with the larger tens place is 9.9.
**Answer:** **9.9** is larger than **9.11**.
```
## Suggested system prompt:
```
Respond in the following format:
<think>
You should reason between these tags.
</think>
Answer goes here...
Always use <think> </think> tags even if they are not necessary.
```
# Parameters
- lr: 2e-5
- epochs: 1
- batch_size: 16
- optimizer: paged_adamw_8bit
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/suayptalha__DeepSeek-R1-Distill-Llama-3B-details)
| Metric |Value|
|-------------------|----:|
|Avg. |23.27|
|IFEval (0-Shot) |70.93|
|BBH (3-Shot) |21.45|
|MATH Lvl 5 (4-Shot)|20.92|
|GPQA (0-shot) | 1.45|
|MuSR (0-shot) | 2.91|
|MMLU-PRO (5-shot) |21.98|
# Support
<a href="https://www.buymeacoffee.com/suayptalha" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a> |