File size: 2,541 Bytes
bc6d1cb 0ae4abc 77a620e bc6d1cb 0ae4abc 852fd3e 0ae4abc 1853074 0ae4abc a1660f4 0ae4abc a1660f4 0ae4abc a1660f4 0ae4abc a1660f4 0ae4abc 96ed3d4 6851ff6 96ed3d4 0ae4abc 5294e31 0ae4abc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: mit
language:
- ja
library_name: transformers
pipeline_tag: text-generation
tags:
- japanese
- llama-2
- Powered by AWS Trainium
---
# stockmark/stockmark-13b
Stockmark-13b is a 13 billion parameter LLM pretrained from scratch based on Japanese corpus of about 220B tokens. This model is developed by [Stockmark Inc.](https://stockmark.co.jp/)
Please see our [blog](https://tech.stockmark.co.jp/blog/202310_stockmark_13b/) for more details.
This project is supported by [AWS LLM development support program](https://aws.amazon.com/jp/local/llm-development-support-program/).
We also provide [stockmark-13b-instruct](https://huggingface.co./stockmark/stockmark-13b-instruct), which is the instruction tuned version of stockmark-13b.
## How to use
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# For A100 or H100 GPU
model = AutoModelForCausalLM.from_pretrained("stockmark/stockmark-13b", device_map="auto", torch_dtype=torch.bfloat16)
# If you use a T4 or V100 GPU, please load a model in 8 bit with the below code.
# To do so, you need to install `bitsandbytes` via `pip install bitsandbytes`.
# model = AutoModelForCausalLM.from_pretrained("stockmark/stockmark-13b", device_map={"": 0}, load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained("stockmark/stockmark-13b")
inputs = tokenizer("自然言語処理とは", return_tensors="pt").to(model.device)
with torch.no_grad():
tokens = model.generate(
**inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7
)
output = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(output)
```
## Examples:
- LoRA tuning: https://huggingface.co./stockmark/stockmark-13b/blob/main/notebooks/LoRA.ipynb
## Training dataset
We have used Japanese corpus of total of about 220 billion tokens.
|corpus|tokens after preprocessing|
|:---:|:---:|
|Stockmark Web Corpus (This dataset will not be released)|9.1 billion|
|Patent|34.8 billion|
|Wikipedia|1.0 billion|
|CC100|10.9 billion|
|mC4|53.2 billion|
|CommonCrawl (snapshot: 2023-23, 2022-49, 2022-21, 2021-21)|112.9 billion|
## Accelerator and Library
- Accelerator: AWS Trainium
- https://aws.amazon.com/machine-learning/trainium/
- Library for distributed training: neuronx-nemo-megatron
- https://github.com/aws-neuron/neuronx-nemo-megatron
## License
[MIT](https://opensource.org/licenses/MIT)
## Developed by
[Stockmark Inc.](https://stockmark.co.jp/)
## Author
[Takahiro Omi](https://huggingface.co./omitakahiro)
|