Delete vary_b.py
Browse files
vary_b.py
DELETED
@@ -1,468 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from typing import Optional, Tuple, Type
|
4 |
-
from functools import partial
|
5 |
-
import torch.nn as nn
|
6 |
-
from typing import Type
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
class MLPBlock(nn.Module):
|
11 |
-
def __init__(
|
12 |
-
self,
|
13 |
-
embedding_dim: int,
|
14 |
-
mlp_dim: int,
|
15 |
-
act: Type[nn.Module] = nn.GELU,
|
16 |
-
) -> None:
|
17 |
-
super().__init__()
|
18 |
-
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
19 |
-
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
20 |
-
self.act = act()
|
21 |
-
|
22 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
23 |
-
return self.lin2(self.act(self.lin1(x)))
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
class LayerNorm2d(nn.Module):
|
28 |
-
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
29 |
-
super().__init__()
|
30 |
-
self.weight = nn.Parameter(torch.ones(num_channels))
|
31 |
-
self.bias = nn.Parameter(torch.zeros(num_channels))
|
32 |
-
self.eps = eps
|
33 |
-
|
34 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
35 |
-
u = x.mean(1, keepdim=True)
|
36 |
-
s = (x - u).pow(2).mean(1, keepdim=True)
|
37 |
-
x = (x - u) / torch.sqrt(s + self.eps)
|
38 |
-
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
39 |
-
return x
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
class ImageEncoderViT(nn.Module):
|
44 |
-
def __init__(
|
45 |
-
self,
|
46 |
-
img_size: int = 1024,
|
47 |
-
patch_size: int = 16,
|
48 |
-
in_chans: int = 3,
|
49 |
-
embed_dim: int = 768,
|
50 |
-
depth: int = 12,
|
51 |
-
num_heads: int = 12,
|
52 |
-
mlp_ratio: float = 4.0,
|
53 |
-
out_chans: int = 256,
|
54 |
-
qkv_bias: bool = True,
|
55 |
-
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
56 |
-
act_layer: Type[nn.Module] = nn.GELU,
|
57 |
-
use_abs_pos: bool = True,
|
58 |
-
use_rel_pos: bool = False,
|
59 |
-
rel_pos_zero_init: bool = True,
|
60 |
-
window_size: int = 0,
|
61 |
-
global_attn_indexes: Tuple[int, ...] = (),
|
62 |
-
) -> None:
|
63 |
-
"""
|
64 |
-
Args:
|
65 |
-
img_size (int): Input image size.
|
66 |
-
patch_size (int): Patch size.
|
67 |
-
in_chans (int): Number of input image channels.
|
68 |
-
embed_dim (int): Patch embedding dimension.
|
69 |
-
depth (int): Depth of ViT.
|
70 |
-
num_heads (int): Number of attention heads in each ViT block.
|
71 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
72 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
73 |
-
norm_layer (nn.Module): Normalization layer.
|
74 |
-
act_layer (nn.Module): Activation layer.
|
75 |
-
use_abs_pos (bool): If True, use absolute positional embeddings.
|
76 |
-
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
77 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
78 |
-
window_size (int): Window size for window attention blocks.
|
79 |
-
global_attn_indexes (list): Indexes for blocks using global attention.
|
80 |
-
"""
|
81 |
-
super().__init__()
|
82 |
-
self.img_size = img_size
|
83 |
-
|
84 |
-
self.patch_embed = PatchEmbed(
|
85 |
-
kernel_size=(patch_size, patch_size),
|
86 |
-
stride=(patch_size, patch_size),
|
87 |
-
in_chans=in_chans,
|
88 |
-
embed_dim=embed_dim,
|
89 |
-
)
|
90 |
-
|
91 |
-
self.pos_embed: Optional[nn.Parameter] = None
|
92 |
-
if use_abs_pos:
|
93 |
-
# Initialize absolute positional embedding with pretrain image size.
|
94 |
-
self.pos_embed = nn.Parameter(
|
95 |
-
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
96 |
-
)
|
97 |
-
|
98 |
-
self.blocks = nn.ModuleList()
|
99 |
-
for i in range(depth):
|
100 |
-
block = Block(
|
101 |
-
dim=embed_dim,
|
102 |
-
num_heads=num_heads,
|
103 |
-
mlp_ratio=mlp_ratio,
|
104 |
-
qkv_bias=qkv_bias,
|
105 |
-
norm_layer=norm_layer,
|
106 |
-
act_layer=act_layer,
|
107 |
-
use_rel_pos=use_rel_pos,
|
108 |
-
rel_pos_zero_init=rel_pos_zero_init,
|
109 |
-
window_size=window_size if i not in global_attn_indexes else 0,
|
110 |
-
input_size=(img_size // patch_size, img_size // patch_size),
|
111 |
-
)
|
112 |
-
self.blocks.append(block)
|
113 |
-
|
114 |
-
self.neck = nn.Sequential(
|
115 |
-
nn.Conv2d(
|
116 |
-
embed_dim,
|
117 |
-
out_chans,
|
118 |
-
kernel_size=1,
|
119 |
-
bias=False,
|
120 |
-
),
|
121 |
-
LayerNorm2d(out_chans),
|
122 |
-
nn.Conv2d(
|
123 |
-
out_chans,
|
124 |
-
out_chans,
|
125 |
-
kernel_size=3,
|
126 |
-
padding=1,
|
127 |
-
bias=False,
|
128 |
-
),
|
129 |
-
LayerNorm2d(out_chans),
|
130 |
-
)
|
131 |
-
|
132 |
-
|
133 |
-
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
134 |
-
self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
|
135 |
-
|
136 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
137 |
-
x = self.patch_embed(x)
|
138 |
-
if self.pos_embed is not None:
|
139 |
-
x = x + self.pos_embed
|
140 |
-
|
141 |
-
for blk in self.blocks:
|
142 |
-
x = blk(x)
|
143 |
-
|
144 |
-
x = self.neck(x.permute(0, 3, 1, 2))
|
145 |
-
x = self.net_2(x)
|
146 |
-
x = self.net_3(x)
|
147 |
-
|
148 |
-
|
149 |
-
return x
|
150 |
-
|
151 |
-
|
152 |
-
class Block(nn.Module):
|
153 |
-
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
154 |
-
|
155 |
-
def __init__(
|
156 |
-
self,
|
157 |
-
dim: int,
|
158 |
-
num_heads: int,
|
159 |
-
mlp_ratio: float = 4.0,
|
160 |
-
qkv_bias: bool = True,
|
161 |
-
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
162 |
-
act_layer: Type[nn.Module] = nn.GELU,
|
163 |
-
use_rel_pos: bool = False,
|
164 |
-
rel_pos_zero_init: bool = True,
|
165 |
-
window_size: int = 0,
|
166 |
-
input_size: Optional[Tuple[int, int]] = None,
|
167 |
-
) -> None:
|
168 |
-
"""
|
169 |
-
Args:
|
170 |
-
dim (int): Number of input channels.
|
171 |
-
num_heads (int): Number of attention heads in each ViT block.
|
172 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
173 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
174 |
-
norm_layer (nn.Module): Normalization layer.
|
175 |
-
act_layer (nn.Module): Activation layer.
|
176 |
-
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
177 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
178 |
-
window_size (int): Window size for window attention blocks. If it equals 0, then
|
179 |
-
use global attention.
|
180 |
-
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
181 |
-
positional parameter size.
|
182 |
-
"""
|
183 |
-
super().__init__()
|
184 |
-
self.norm1 = norm_layer(dim)
|
185 |
-
self.attn = Attention(
|
186 |
-
dim,
|
187 |
-
num_heads=num_heads,
|
188 |
-
qkv_bias=qkv_bias,
|
189 |
-
use_rel_pos=use_rel_pos,
|
190 |
-
rel_pos_zero_init=rel_pos_zero_init,
|
191 |
-
input_size=input_size if window_size == 0 else (window_size, window_size),
|
192 |
-
)
|
193 |
-
|
194 |
-
self.norm2 = norm_layer(dim)
|
195 |
-
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
196 |
-
|
197 |
-
self.window_size = window_size
|
198 |
-
|
199 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
200 |
-
shortcut = x
|
201 |
-
x = self.norm1(x)
|
202 |
-
# Window partition
|
203 |
-
if self.window_size > 0:
|
204 |
-
H, W = x.shape[1], x.shape[2]
|
205 |
-
x, pad_hw = window_partition(x, self.window_size)
|
206 |
-
|
207 |
-
x = self.attn(x)
|
208 |
-
# Reverse window partition
|
209 |
-
if self.window_size > 0:
|
210 |
-
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
211 |
-
|
212 |
-
x = shortcut + x
|
213 |
-
x = x + self.mlp(self.norm2(x))
|
214 |
-
|
215 |
-
return x
|
216 |
-
|
217 |
-
|
218 |
-
class Attention(nn.Module):
|
219 |
-
"""Multi-head Attention block with relative position embeddings."""
|
220 |
-
|
221 |
-
def __init__(
|
222 |
-
self,
|
223 |
-
dim: int,
|
224 |
-
num_heads: int = 8,
|
225 |
-
qkv_bias: bool = True,
|
226 |
-
use_rel_pos: bool = False,
|
227 |
-
rel_pos_zero_init: bool = True,
|
228 |
-
input_size: Optional[Tuple[int, int]] = None,
|
229 |
-
) -> None:
|
230 |
-
"""
|
231 |
-
Args:
|
232 |
-
dim (int): Number of input channels.
|
233 |
-
num_heads (int): Number of attention heads.
|
234 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
235 |
-
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
236 |
-
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
237 |
-
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
238 |
-
positional parameter size.
|
239 |
-
"""
|
240 |
-
super().__init__()
|
241 |
-
self.num_heads = num_heads
|
242 |
-
head_dim = dim // num_heads
|
243 |
-
self.scale = head_dim**-0.5
|
244 |
-
|
245 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
246 |
-
self.proj = nn.Linear(dim, dim)
|
247 |
-
|
248 |
-
self.use_rel_pos = use_rel_pos
|
249 |
-
if self.use_rel_pos:
|
250 |
-
assert (
|
251 |
-
input_size is not None
|
252 |
-
), "Input size must be provided if using relative positional encoding."
|
253 |
-
# initialize relative positional embeddings
|
254 |
-
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
255 |
-
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
256 |
-
|
257 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
258 |
-
B, H, W, _ = x.shape
|
259 |
-
# qkv with shape (3, B, nHead, H * W, C)
|
260 |
-
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
261 |
-
# q, k, v with shape (B * nHead, H * W, C)
|
262 |
-
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
263 |
-
|
264 |
-
attn = (q * self.scale) @ k.transpose(-2, -1)
|
265 |
-
|
266 |
-
if self.use_rel_pos:
|
267 |
-
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
268 |
-
|
269 |
-
attn = attn.softmax(dim=-1)
|
270 |
-
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
271 |
-
x = self.proj(x)
|
272 |
-
|
273 |
-
return x
|
274 |
-
|
275 |
-
|
276 |
-
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
277 |
-
"""
|
278 |
-
Partition into non-overlapping windows with padding if needed.
|
279 |
-
Args:
|
280 |
-
x (tensor): input tokens with [B, H, W, C].
|
281 |
-
window_size (int): window size.
|
282 |
-
|
283 |
-
Returns:
|
284 |
-
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
285 |
-
(Hp, Wp): padded height and width before partition
|
286 |
-
"""
|
287 |
-
B, H, W, C = x.shape
|
288 |
-
|
289 |
-
pad_h = (window_size - H % window_size) % window_size
|
290 |
-
pad_w = (window_size - W % window_size) % window_size
|
291 |
-
if pad_h > 0 or pad_w > 0:
|
292 |
-
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
293 |
-
Hp, Wp = H + pad_h, W + pad_w
|
294 |
-
|
295 |
-
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
296 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
297 |
-
return windows, (Hp, Wp)
|
298 |
-
|
299 |
-
|
300 |
-
def window_unpartition(
|
301 |
-
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
302 |
-
) -> torch.Tensor:
|
303 |
-
"""
|
304 |
-
Window unpartition into original sequences and removing padding.
|
305 |
-
Args:
|
306 |
-
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
307 |
-
window_size (int): window size.
|
308 |
-
pad_hw (Tuple): padded height and width (Hp, Wp).
|
309 |
-
hw (Tuple): original height and width (H, W) before padding.
|
310 |
-
|
311 |
-
Returns:
|
312 |
-
x: unpartitioned sequences with [B, H, W, C].
|
313 |
-
"""
|
314 |
-
Hp, Wp = pad_hw
|
315 |
-
H, W = hw
|
316 |
-
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
317 |
-
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
318 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
319 |
-
|
320 |
-
if Hp > H or Wp > W:
|
321 |
-
x = x[:, :H, :W, :].contiguous()
|
322 |
-
return x
|
323 |
-
|
324 |
-
|
325 |
-
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
326 |
-
"""
|
327 |
-
Get relative positional embeddings according to the relative positions of
|
328 |
-
query and key sizes.
|
329 |
-
Args:
|
330 |
-
q_size (int): size of query q.
|
331 |
-
k_size (int): size of key k.
|
332 |
-
rel_pos (Tensor): relative position embeddings (L, C).
|
333 |
-
|
334 |
-
Returns:
|
335 |
-
Extracted positional embeddings according to relative positions.
|
336 |
-
"""
|
337 |
-
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
338 |
-
# Interpolate rel pos if needed.
|
339 |
-
if rel_pos.shape[0] != max_rel_dist:
|
340 |
-
# Interpolate rel pos.
|
341 |
-
rel_pos_resized = F.interpolate(
|
342 |
-
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
343 |
-
size=max_rel_dist,
|
344 |
-
mode="linear",
|
345 |
-
)
|
346 |
-
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
347 |
-
else:
|
348 |
-
rel_pos_resized = rel_pos
|
349 |
-
|
350 |
-
# Scale the coords with short length if shapes for q and k are different.
|
351 |
-
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
352 |
-
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
353 |
-
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
354 |
-
|
355 |
-
return rel_pos_resized[relative_coords.long()]
|
356 |
-
|
357 |
-
|
358 |
-
def add_decomposed_rel_pos(
|
359 |
-
attn: torch.Tensor,
|
360 |
-
q: torch.Tensor,
|
361 |
-
rel_pos_h: torch.Tensor,
|
362 |
-
rel_pos_w: torch.Tensor,
|
363 |
-
q_size: Tuple[int, int],
|
364 |
-
k_size: Tuple[int, int],
|
365 |
-
) -> torch.Tensor:
|
366 |
-
"""
|
367 |
-
Args:
|
368 |
-
attn (Tensor): attention map.
|
369 |
-
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
370 |
-
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
371 |
-
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
372 |
-
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
373 |
-
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
374 |
-
|
375 |
-
Returns:
|
376 |
-
attn (Tensor): attention map with added relative positional embeddings.
|
377 |
-
"""
|
378 |
-
q_h, q_w = q_size
|
379 |
-
k_h, k_w = k_size
|
380 |
-
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
381 |
-
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
382 |
-
|
383 |
-
B, _, dim = q.shape
|
384 |
-
r_q = q.reshape(B, q_h, q_w, dim)
|
385 |
-
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
386 |
-
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
387 |
-
|
388 |
-
attn = (
|
389 |
-
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
390 |
-
).view(B, q_h * q_w, k_h * k_w)
|
391 |
-
|
392 |
-
return attn
|
393 |
-
|
394 |
-
|
395 |
-
class PatchEmbed(nn.Module):
|
396 |
-
"""
|
397 |
-
Image to Patch Embedding.
|
398 |
-
"""
|
399 |
-
|
400 |
-
def __init__(
|
401 |
-
self,
|
402 |
-
kernel_size: Tuple[int, int] = (16, 16),
|
403 |
-
stride: Tuple[int, int] = (16, 16),
|
404 |
-
padding: Tuple[int, int] = (0, 0),
|
405 |
-
in_chans: int = 3,
|
406 |
-
embed_dim: int = 768,
|
407 |
-
) -> None:
|
408 |
-
"""
|
409 |
-
Args:
|
410 |
-
kernel_size (Tuple): kernel size of the projection layer.
|
411 |
-
stride (Tuple): stride of the projection layer.
|
412 |
-
padding (Tuple): padding size of the projection layer.
|
413 |
-
in_chans (int): Number of input image channels.
|
414 |
-
embed_dim (int): Patch embedding dimension.
|
415 |
-
"""
|
416 |
-
super().__init__()
|
417 |
-
|
418 |
-
self.proj = nn.Conv2d(
|
419 |
-
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
420 |
-
)
|
421 |
-
|
422 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
423 |
-
x = self.proj(x)
|
424 |
-
# B C H W -> B H W C
|
425 |
-
x = x.permute(0, 2, 3, 1)
|
426 |
-
return x
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
def build_vary_vit_b(checkpoint=None):
|
431 |
-
return _build_vary(
|
432 |
-
encoder_embed_dim=768,
|
433 |
-
encoder_depth=12,
|
434 |
-
encoder_num_heads=12,
|
435 |
-
encoder_global_attn_indexes=[2, 5, 8, 11],
|
436 |
-
checkpoint=checkpoint,
|
437 |
-
)
|
438 |
-
|
439 |
-
|
440 |
-
def _build_vary(
|
441 |
-
encoder_embed_dim,
|
442 |
-
encoder_depth,
|
443 |
-
encoder_num_heads,
|
444 |
-
encoder_global_attn_indexes,
|
445 |
-
checkpoint=None,
|
446 |
-
):
|
447 |
-
prompt_embed_dim = 256
|
448 |
-
image_size = 1024
|
449 |
-
vit_patch_size = 16
|
450 |
-
image_embedding_size = image_size // vit_patch_size
|
451 |
-
image_encoder=ImageEncoderViT(
|
452 |
-
depth=encoder_depth,
|
453 |
-
embed_dim=encoder_embed_dim,
|
454 |
-
img_size=image_size,
|
455 |
-
mlp_ratio=4,
|
456 |
-
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
457 |
-
num_heads=encoder_num_heads,
|
458 |
-
patch_size=vit_patch_size,
|
459 |
-
qkv_bias=True,
|
460 |
-
use_rel_pos=True,
|
461 |
-
global_attn_indexes=encoder_global_attn_indexes,
|
462 |
-
window_size=14,
|
463 |
-
out_chans=prompt_embed_dim,
|
464 |
-
)
|
465 |
-
|
466 |
-
|
467 |
-
return image_encoder
|
468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|