ucaslcl commited on
Commit
c680bc0
·
verified ·
1 Parent(s): 5174f58

Delete vary_b.py

Browse files
Files changed (1) hide show
  1. vary_b.py +0 -468
vary_b.py DELETED
@@ -1,468 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- from typing import Optional, Tuple, Type
4
- from functools import partial
5
- import torch.nn as nn
6
- from typing import Type
7
-
8
-
9
-
10
- class MLPBlock(nn.Module):
11
- def __init__(
12
- self,
13
- embedding_dim: int,
14
- mlp_dim: int,
15
- act: Type[nn.Module] = nn.GELU,
16
- ) -> None:
17
- super().__init__()
18
- self.lin1 = nn.Linear(embedding_dim, mlp_dim)
19
- self.lin2 = nn.Linear(mlp_dim, embedding_dim)
20
- self.act = act()
21
-
22
- def forward(self, x: torch.Tensor) -> torch.Tensor:
23
- return self.lin2(self.act(self.lin1(x)))
24
-
25
-
26
-
27
- class LayerNorm2d(nn.Module):
28
- def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
29
- super().__init__()
30
- self.weight = nn.Parameter(torch.ones(num_channels))
31
- self.bias = nn.Parameter(torch.zeros(num_channels))
32
- self.eps = eps
33
-
34
- def forward(self, x: torch.Tensor) -> torch.Tensor:
35
- u = x.mean(1, keepdim=True)
36
- s = (x - u).pow(2).mean(1, keepdim=True)
37
- x = (x - u) / torch.sqrt(s + self.eps)
38
- x = self.weight[:, None, None] * x + self.bias[:, None, None]
39
- return x
40
-
41
-
42
-
43
- class ImageEncoderViT(nn.Module):
44
- def __init__(
45
- self,
46
- img_size: int = 1024,
47
- patch_size: int = 16,
48
- in_chans: int = 3,
49
- embed_dim: int = 768,
50
- depth: int = 12,
51
- num_heads: int = 12,
52
- mlp_ratio: float = 4.0,
53
- out_chans: int = 256,
54
- qkv_bias: bool = True,
55
- norm_layer: Type[nn.Module] = nn.LayerNorm,
56
- act_layer: Type[nn.Module] = nn.GELU,
57
- use_abs_pos: bool = True,
58
- use_rel_pos: bool = False,
59
- rel_pos_zero_init: bool = True,
60
- window_size: int = 0,
61
- global_attn_indexes: Tuple[int, ...] = (),
62
- ) -> None:
63
- """
64
- Args:
65
- img_size (int): Input image size.
66
- patch_size (int): Patch size.
67
- in_chans (int): Number of input image channels.
68
- embed_dim (int): Patch embedding dimension.
69
- depth (int): Depth of ViT.
70
- num_heads (int): Number of attention heads in each ViT block.
71
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
72
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
73
- norm_layer (nn.Module): Normalization layer.
74
- act_layer (nn.Module): Activation layer.
75
- use_abs_pos (bool): If True, use absolute positional embeddings.
76
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
77
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
78
- window_size (int): Window size for window attention blocks.
79
- global_attn_indexes (list): Indexes for blocks using global attention.
80
- """
81
- super().__init__()
82
- self.img_size = img_size
83
-
84
- self.patch_embed = PatchEmbed(
85
- kernel_size=(patch_size, patch_size),
86
- stride=(patch_size, patch_size),
87
- in_chans=in_chans,
88
- embed_dim=embed_dim,
89
- )
90
-
91
- self.pos_embed: Optional[nn.Parameter] = None
92
- if use_abs_pos:
93
- # Initialize absolute positional embedding with pretrain image size.
94
- self.pos_embed = nn.Parameter(
95
- torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
96
- )
97
-
98
- self.blocks = nn.ModuleList()
99
- for i in range(depth):
100
- block = Block(
101
- dim=embed_dim,
102
- num_heads=num_heads,
103
- mlp_ratio=mlp_ratio,
104
- qkv_bias=qkv_bias,
105
- norm_layer=norm_layer,
106
- act_layer=act_layer,
107
- use_rel_pos=use_rel_pos,
108
- rel_pos_zero_init=rel_pos_zero_init,
109
- window_size=window_size if i not in global_attn_indexes else 0,
110
- input_size=(img_size // patch_size, img_size // patch_size),
111
- )
112
- self.blocks.append(block)
113
-
114
- self.neck = nn.Sequential(
115
- nn.Conv2d(
116
- embed_dim,
117
- out_chans,
118
- kernel_size=1,
119
- bias=False,
120
- ),
121
- LayerNorm2d(out_chans),
122
- nn.Conv2d(
123
- out_chans,
124
- out_chans,
125
- kernel_size=3,
126
- padding=1,
127
- bias=False,
128
- ),
129
- LayerNorm2d(out_chans),
130
- )
131
-
132
-
133
- self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
134
- self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
135
-
136
- def forward(self, x: torch.Tensor) -> torch.Tensor:
137
- x = self.patch_embed(x)
138
- if self.pos_embed is not None:
139
- x = x + self.pos_embed
140
-
141
- for blk in self.blocks:
142
- x = blk(x)
143
-
144
- x = self.neck(x.permute(0, 3, 1, 2))
145
- x = self.net_2(x)
146
- x = self.net_3(x)
147
-
148
-
149
- return x
150
-
151
-
152
- class Block(nn.Module):
153
- """Transformer blocks with support of window attention and residual propagation blocks"""
154
-
155
- def __init__(
156
- self,
157
- dim: int,
158
- num_heads: int,
159
- mlp_ratio: float = 4.0,
160
- qkv_bias: bool = True,
161
- norm_layer: Type[nn.Module] = nn.LayerNorm,
162
- act_layer: Type[nn.Module] = nn.GELU,
163
- use_rel_pos: bool = False,
164
- rel_pos_zero_init: bool = True,
165
- window_size: int = 0,
166
- input_size: Optional[Tuple[int, int]] = None,
167
- ) -> None:
168
- """
169
- Args:
170
- dim (int): Number of input channels.
171
- num_heads (int): Number of attention heads in each ViT block.
172
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
173
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
174
- norm_layer (nn.Module): Normalization layer.
175
- act_layer (nn.Module): Activation layer.
176
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
177
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
178
- window_size (int): Window size for window attention blocks. If it equals 0, then
179
- use global attention.
180
- input_size (tuple(int, int) or None): Input resolution for calculating the relative
181
- positional parameter size.
182
- """
183
- super().__init__()
184
- self.norm1 = norm_layer(dim)
185
- self.attn = Attention(
186
- dim,
187
- num_heads=num_heads,
188
- qkv_bias=qkv_bias,
189
- use_rel_pos=use_rel_pos,
190
- rel_pos_zero_init=rel_pos_zero_init,
191
- input_size=input_size if window_size == 0 else (window_size, window_size),
192
- )
193
-
194
- self.norm2 = norm_layer(dim)
195
- self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
196
-
197
- self.window_size = window_size
198
-
199
- def forward(self, x: torch.Tensor) -> torch.Tensor:
200
- shortcut = x
201
- x = self.norm1(x)
202
- # Window partition
203
- if self.window_size > 0:
204
- H, W = x.shape[1], x.shape[2]
205
- x, pad_hw = window_partition(x, self.window_size)
206
-
207
- x = self.attn(x)
208
- # Reverse window partition
209
- if self.window_size > 0:
210
- x = window_unpartition(x, self.window_size, pad_hw, (H, W))
211
-
212
- x = shortcut + x
213
- x = x + self.mlp(self.norm2(x))
214
-
215
- return x
216
-
217
-
218
- class Attention(nn.Module):
219
- """Multi-head Attention block with relative position embeddings."""
220
-
221
- def __init__(
222
- self,
223
- dim: int,
224
- num_heads: int = 8,
225
- qkv_bias: bool = True,
226
- use_rel_pos: bool = False,
227
- rel_pos_zero_init: bool = True,
228
- input_size: Optional[Tuple[int, int]] = None,
229
- ) -> None:
230
- """
231
- Args:
232
- dim (int): Number of input channels.
233
- num_heads (int): Number of attention heads.
234
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
235
- rel_pos (bool): If True, add relative positional embeddings to the attention map.
236
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
237
- input_size (tuple(int, int) or None): Input resolution for calculating the relative
238
- positional parameter size.
239
- """
240
- super().__init__()
241
- self.num_heads = num_heads
242
- head_dim = dim // num_heads
243
- self.scale = head_dim**-0.5
244
-
245
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
246
- self.proj = nn.Linear(dim, dim)
247
-
248
- self.use_rel_pos = use_rel_pos
249
- if self.use_rel_pos:
250
- assert (
251
- input_size is not None
252
- ), "Input size must be provided if using relative positional encoding."
253
- # initialize relative positional embeddings
254
- self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
255
- self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
256
-
257
- def forward(self, x: torch.Tensor) -> torch.Tensor:
258
- B, H, W, _ = x.shape
259
- # qkv with shape (3, B, nHead, H * W, C)
260
- qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
261
- # q, k, v with shape (B * nHead, H * W, C)
262
- q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
263
-
264
- attn = (q * self.scale) @ k.transpose(-2, -1)
265
-
266
- if self.use_rel_pos:
267
- attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
268
-
269
- attn = attn.softmax(dim=-1)
270
- x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
271
- x = self.proj(x)
272
-
273
- return x
274
-
275
-
276
- def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
277
- """
278
- Partition into non-overlapping windows with padding if needed.
279
- Args:
280
- x (tensor): input tokens with [B, H, W, C].
281
- window_size (int): window size.
282
-
283
- Returns:
284
- windows: windows after partition with [B * num_windows, window_size, window_size, C].
285
- (Hp, Wp): padded height and width before partition
286
- """
287
- B, H, W, C = x.shape
288
-
289
- pad_h = (window_size - H % window_size) % window_size
290
- pad_w = (window_size - W % window_size) % window_size
291
- if pad_h > 0 or pad_w > 0:
292
- x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
293
- Hp, Wp = H + pad_h, W + pad_w
294
-
295
- x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
296
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
297
- return windows, (Hp, Wp)
298
-
299
-
300
- def window_unpartition(
301
- windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
302
- ) -> torch.Tensor:
303
- """
304
- Window unpartition into original sequences and removing padding.
305
- Args:
306
- windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
307
- window_size (int): window size.
308
- pad_hw (Tuple): padded height and width (Hp, Wp).
309
- hw (Tuple): original height and width (H, W) before padding.
310
-
311
- Returns:
312
- x: unpartitioned sequences with [B, H, W, C].
313
- """
314
- Hp, Wp = pad_hw
315
- H, W = hw
316
- B = windows.shape[0] // (Hp * Wp // window_size // window_size)
317
- x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
318
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
319
-
320
- if Hp > H or Wp > W:
321
- x = x[:, :H, :W, :].contiguous()
322
- return x
323
-
324
-
325
- def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
326
- """
327
- Get relative positional embeddings according to the relative positions of
328
- query and key sizes.
329
- Args:
330
- q_size (int): size of query q.
331
- k_size (int): size of key k.
332
- rel_pos (Tensor): relative position embeddings (L, C).
333
-
334
- Returns:
335
- Extracted positional embeddings according to relative positions.
336
- """
337
- max_rel_dist = int(2 * max(q_size, k_size) - 1)
338
- # Interpolate rel pos if needed.
339
- if rel_pos.shape[0] != max_rel_dist:
340
- # Interpolate rel pos.
341
- rel_pos_resized = F.interpolate(
342
- rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
343
- size=max_rel_dist,
344
- mode="linear",
345
- )
346
- rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
347
- else:
348
- rel_pos_resized = rel_pos
349
-
350
- # Scale the coords with short length if shapes for q and k are different.
351
- q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
352
- k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
353
- relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
354
-
355
- return rel_pos_resized[relative_coords.long()]
356
-
357
-
358
- def add_decomposed_rel_pos(
359
- attn: torch.Tensor,
360
- q: torch.Tensor,
361
- rel_pos_h: torch.Tensor,
362
- rel_pos_w: torch.Tensor,
363
- q_size: Tuple[int, int],
364
- k_size: Tuple[int, int],
365
- ) -> torch.Tensor:
366
- """
367
- Args:
368
- attn (Tensor): attention map.
369
- q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
370
- rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
371
- rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
372
- q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
373
- k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
374
-
375
- Returns:
376
- attn (Tensor): attention map with added relative positional embeddings.
377
- """
378
- q_h, q_w = q_size
379
- k_h, k_w = k_size
380
- Rh = get_rel_pos(q_h, k_h, rel_pos_h)
381
- Rw = get_rel_pos(q_w, k_w, rel_pos_w)
382
-
383
- B, _, dim = q.shape
384
- r_q = q.reshape(B, q_h, q_w, dim)
385
- rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
386
- rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
387
-
388
- attn = (
389
- attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
390
- ).view(B, q_h * q_w, k_h * k_w)
391
-
392
- return attn
393
-
394
-
395
- class PatchEmbed(nn.Module):
396
- """
397
- Image to Patch Embedding.
398
- """
399
-
400
- def __init__(
401
- self,
402
- kernel_size: Tuple[int, int] = (16, 16),
403
- stride: Tuple[int, int] = (16, 16),
404
- padding: Tuple[int, int] = (0, 0),
405
- in_chans: int = 3,
406
- embed_dim: int = 768,
407
- ) -> None:
408
- """
409
- Args:
410
- kernel_size (Tuple): kernel size of the projection layer.
411
- stride (Tuple): stride of the projection layer.
412
- padding (Tuple): padding size of the projection layer.
413
- in_chans (int): Number of input image channels.
414
- embed_dim (int): Patch embedding dimension.
415
- """
416
- super().__init__()
417
-
418
- self.proj = nn.Conv2d(
419
- in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
420
- )
421
-
422
- def forward(self, x: torch.Tensor) -> torch.Tensor:
423
- x = self.proj(x)
424
- # B C H W -> B H W C
425
- x = x.permute(0, 2, 3, 1)
426
- return x
427
-
428
-
429
-
430
- def build_vary_vit_b(checkpoint=None):
431
- return _build_vary(
432
- encoder_embed_dim=768,
433
- encoder_depth=12,
434
- encoder_num_heads=12,
435
- encoder_global_attn_indexes=[2, 5, 8, 11],
436
- checkpoint=checkpoint,
437
- )
438
-
439
-
440
- def _build_vary(
441
- encoder_embed_dim,
442
- encoder_depth,
443
- encoder_num_heads,
444
- encoder_global_attn_indexes,
445
- checkpoint=None,
446
- ):
447
- prompt_embed_dim = 256
448
- image_size = 1024
449
- vit_patch_size = 16
450
- image_embedding_size = image_size // vit_patch_size
451
- image_encoder=ImageEncoderViT(
452
- depth=encoder_depth,
453
- embed_dim=encoder_embed_dim,
454
- img_size=image_size,
455
- mlp_ratio=4,
456
- norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
457
- num_heads=encoder_num_heads,
458
- patch_size=vit_patch_size,
459
- qkv_bias=True,
460
- use_rel_pos=True,
461
- global_attn_indexes=encoder_global_attn_indexes,
462
- window_size=14,
463
- out_chans=prompt_embed_dim,
464
- )
465
-
466
-
467
- return image_encoder
468
-