--- language: - de - bg - cs - da - el - en - es - et - fi - fr - ga - hr - hu - it - lt - lv - mt - nl - pl - pt - ro - sl - sv - sk metrics: - accuracy - bleu pipeline_tag: text-generation library_name: transformers base_model: openGPT-X/Teuken-7B-instruct-commercial-v0.4 license: apache-2.0 tags: - mlx --- # stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit The Model [stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit](https://huggingface.co./stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit) was converted to MLX format from [openGPT-X/Teuken-7B-instruct-commercial-v0.4](https://huggingface.co./openGPT-X/Teuken-7B-instruct-commercial-v0.4) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```