--- language: - de - en - it - fr - pt - nl - ar - es license: apache-2.0 tags: - spectrum - sft - mlx base_model: VAGOsolutions/SauerkrautLM-v2-14b-SFT model-index: - name: SauerkrautLM-v2-14b-SFT results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 69.64 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 45.82 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 29.23 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 11.41 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 11.07 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 46.73 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT name: Open LLM Leaderboard --- # stelterlab/SauerkrautLM-v2-14b-SFT-MLX The Model [stelterlab/SauerkrautLM-v2-14b-SFT-MLX](https://huggingface.co./stelterlab/SauerkrautLM-v2-14b-SFT-MLX) was converted to MLX format from [VAGOsolutions/SauerkrautLM-v2-14b-SFT](https://huggingface.co./VAGOsolutions/SauerkrautLM-v2-14b-SFT) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("stelterlab/SauerkrautLM-v2-14b-SFT-MLX") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```