--- datasets: - germeval_14 tags: - flair - token-classification - sequence-tagger-model language: de widget: - text: "Hugging Face ist eine französische Firma mit Sitz in New York." license: mit --- # Flair NER model trained on GermEval14 dataset This model was trained on the official [GermEval14](https://sites.google.com/site/germeval2014ner/data) dataset using the [Flair](https://github.com/flairNLP/flair) framework. It uses a fine-tuned German DistilBERT model from [here](https://huggingface.co./distilbert-base-german-cased). # Results | Dataset \ Run | Run 1 | Run 2 | Run 3† | Run 4 | Run 5 | Avg. | ------------- | ----- | ----- | --------- | ----- | ----- | ---- | Development | 87.05 | 86.52 | **87.34** | 86.85 | 86.46 | 86.84 | Test | 85.43 | 85.88 | 85.72 | 85.47 | 85.62 | 85.62 † denotes that this model is selected for upload. # Flair Fine-Tuning We used the following script to fine-tune the model on the GermEval14 dataset: ```python from argparse import ArgumentParser import torch, flair # dataset, model and embedding imports from flair.datasets import GERMEVAL_14 from flair.embeddings import TransformerWordEmbeddings from flair.models import SequenceTagger from flair.trainers import ModelTrainer if __name__ == "__main__": # All arguments that can be passed parser = ArgumentParser() parser.add_argument("-s", "--seeds", nargs='+', type=int, default='42') # pass list of seeds for experiments parser.add_argument("-c", "--cuda", type=int, default=0, help="CUDA device") # which cuda device to use parser.add_argument("-m", "--model", type=str, help="Model name (such as Hugging Face model hub name") # Parse experimental arguments args = parser.parse_args() # use cuda device as passed flair.device = f'cuda:{str(args.cuda)}' # for each passed seed, do one experimental run for seed in args.seeds: flair.set_seed(seed) # model hf_model = args.model # initialize embeddings embeddings = TransformerWordEmbeddings( model=hf_model, layers="-1", subtoken_pooling="first", fine_tune=True, use_context=False, respect_document_boundaries=False, ) # select dataset depending on which language variable is passed corpus = GERMEVAL_14() # make the dictionary of tags to predict tag_dictionary = corpus.make_tag_dictionary('ner') # init bare-bones sequence tagger (no reprojection, LSTM or CRF) tagger: SequenceTagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # init the model trainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # make string for output folder output_folder = f"flert-ner-{hf_model}-{seed}" # train with XLM parameters (AdamW, 20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train( output_folder, learning_rate=5.0e-5, mini_batch_size=16, mini_batch_chunk_size=1, max_epochs=10, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., train_with_dev=False, ) ```