import gradio as gr import os import torch import torch from PIL import Image from diffusers import ( AutoencoderKL, ) from transformers import CLIPTextModel, CLIPTokenizer from depthmaster import DepthMasterPipeline from depthmaster.modules.unet_2d_condition import UNet2DConditionModel def load_example(example_image): # 返回选中的图片 return example_image device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use torch_dtype = torch.float32 vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False) unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False) text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype) tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer", torch_dtype=torch_dtype) pipe = DepthMasterPipeline(vae=vae, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer) try: pipe.enable_xformers_memory_efficient_attention() except ImportError: pass # run without xformers pipe = pipe.to(device) # @spaces.GPU #[uncomment to use ZeroGPU] def infer( input_image, progress=gr.Progress(track_tqdm=True), ): pipe_out = pipe( input_image, processing_res=768, match_input_res=True, batch_size=1, color_map="Spectral", show_progress_bar=True, resample_method="bilinear", ) # depth_pred: np.ndarray = pipe_out.depth_np depth_colored: Image.Image = pipe_out.depth_colored return depth_colored # 默认图像路径 example_images = [ "wild_example/000000000776.jpg", "wild_example/800x.jpg", "wild_example/000000055950.jpg", "wild_example/53441037037_c2cbd91ad2_k.jpg", "wild_example/53501906161_6109e3da29_b.jpg", "wild_example/m_1e31af1c.jpg", "wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg" ] # css = """ # #col-container { # margin: 0 auto; # max-width: 640px; # } # #example-gallery { # height: 80px; /* 设置缩略图高度 */ # width: auto; /* 保持宽高比 */ # margin: 0 auto; /* 图片间距 */ # cursor: pointer; /* 鼠标指针变为手型 */ # } # """ css = """ #img-display-container { max-height: 100vh; } #img-display-input { max-height: 80vh; } #img-display-output { max-height: 80vh; } #download { height: 62px; } """ title = "# DepthMaster" description = """**Official demo for DepthMaster**. Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details.""" with gr.Blocks(css=css) as demo: gr.Markdown(title) gr.Markdown(description) gr.Markdown(" ### Depth Estimation with DepthMaster.") # with gr.Column(elem_id="col-container"): # gr.Markdown(" # Depth Estimation") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil", elem_id="img-display-input") with gr.Column(): # depth_img_slider = ImageSlider(label="Depth Map with Slider View", elem_id="img-display-output", position=0.5) depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map") # 计算按钮 compute_button = gr.Button(value="Compute Depth") # 设置计算按钮的回调 compute_button.click( fn=infer, # 回调函数 inputs=[input_image], # 输入 outputs=[depth_map] # 输出 ) example_files = os.listdir('wild_example') example_files.sort() example_files = [os.path.join('wild_example', filename) for filename in example_files] examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_map], fn=infer) # 启动 Gradio 应用 demo.queue().launch(share=True)