zysong212 commited on
Commit
a596294
·
verified ·
1 Parent(s): c51a4da

add example images

Browse files
Files changed (1) hide show
  1. app.py +48 -158
app.py CHANGED
@@ -1,12 +1,14 @@
1
  import gradio as gr
2
  import os
 
 
 
 
3
 
4
  import torch
5
  from PIL import Image
6
  from diffusers import (
7
  AutoencoderKL,
8
- DiffusionPipeline,
9
- # UNet2DConditionModel,
10
  )
11
 
12
  from transformers import CLIPTextModel, CLIPTokenizer
@@ -21,16 +23,8 @@ def load_example(example_image):
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
  model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use
23
 
24
- # if torch.cuda.is_available():
25
- # torch_dtype = torch.float16
26
- # else:
27
  torch_dtype = torch.float32
28
 
29
- # pipe = DepthMasterPipeline.from_pretrained('eval', torch_dtype=torch_dtype)
30
- # unet = UNet2DConditionModel.from_pretrained(os.path.join('eval', f'unet'))
31
- # pipe = DepthMasterPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
32
- # unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype)
33
- # pipe.unet = unet
34
  vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False)
35
  unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False)
36
  text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype)
@@ -45,29 +39,13 @@ except ImportError:
45
 
46
  pipe = pipe.to(device)
47
 
48
- # MAX_SEED = np.iinfo(np.int32).max
49
- # MAX_IMAGE_SIZE = 1024
50
-
51
 
52
  # @spaces.GPU #[uncomment to use ZeroGPU]
53
  def infer(
54
  input_image,
55
  progress=gr.Progress(track_tqdm=True),
56
  ):
57
- # if randomize_seed:
58
- # seed = random.randint(0, MAX_SEED)
59
-
60
- # generator = torch.Generator().manual_seed(seed)
61
-
62
- # image = pipe(
63
- # prompt=prompt,
64
- # negative_prompt=negative_prompt,
65
- # guidance_scale=guidance_scale,
66
- # num_inference_steps=num_inference_steps,
67
- # width=width,
68
- # height=height,
69
- # generator=generator,
70
- # ).images[0]
71
  pipe_out = pipe(
72
  input_image,
73
  processing_res=768,
@@ -96,155 +74,67 @@ example_images = [
96
  "wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg"
97
  ]
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  css = """
100
- #col-container {
101
- margin: 0 auto;
102
- max-width: 640px;
 
 
 
 
 
103
  }
104
- #example-gallery {
105
- height: 80px; /* 设置缩略图高度 */
106
- width: auto; /* 保持宽高比 */
107
- margin: 0 auto; /* 图片间距 */
108
- cursor: pointer; /* 鼠标指针变为手型 */
109
  }
110
  """
111
 
 
 
 
 
 
112
  with gr.Blocks(css=css) as demo:
113
- gr.Markdown("# DepthMaster")
114
- gr.Markdown("Official demo for DepthMaster. Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details.")
115
  gr.Markdown(" ### Depth Estimation with DepthMaster.")
116
  # with gr.Column(elem_id="col-container"):
117
  # gr.Markdown(" # Depth Estimation")
118
  with gr.Row():
119
  with gr.Column():
120
- input_image = gr.Image(label="Input Image", type="pil", elem_id="input-image", interactive=True)
121
  with gr.Column():
 
122
  depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map")
123
-
124
- # 计算按钮
125
- compute_button = gr.Button("Compute Depth")
126
-
127
- # # 添加示例图片选择器
128
- # with gr.Row():
129
- # gr.Markdown("### example images")
130
- # with gr.Row(elem_id="example-gallery"):
131
- # example_gallery = gr.Gallery(
132
- # label="",
133
- # value=example_images,
134
- # elem_id="example-gallery",
135
- # show_label=False,
136
- # interactive=True,
137
- # columns=10
138
- # )
139
-
140
- # 设置默认图片点击后的操作
141
- # example_gallery.select(
142
- # fn=lambda img_path: img_path, # 回调函数:返回选择的路径
143
- # inputs=[],
144
- # outputs=input_image # 输出设置为 Input Image
145
- # )
146
- # example_gallery.click(
147
- # fn=load_example, # 选择图片的回调
148
- # inputs=[example_gallery], # 输入:用户点击的图片
149
- # outputs=[input_image] # 输出:更新 Input Image
150
- # )
151
 
 
 
152
 
153
  # 设置计算按钮的回调
154
  compute_button.click(
155
  fn=infer, # 回调函数
156
- inputs=input_image, # 输入
157
- outputs=depth_map # 输出
158
  )
159
 
 
 
 
 
 
 
160
  # 启动 Gradio 应用
161
- demo.launch()
162
- # with gr.Column(scale=45):
163
- # img_in = gr.Image(type="pil")
164
- # with gr.Column(scale=45):
165
- # img_out =
166
-
167
- # with gr.Row():
168
- # prompt = gr.Text(
169
- # label="Prompt",
170
- # show_label=False,
171
- # max_lines=1,
172
- # placeholder="Enter your prompt",
173
- # container=False,
174
- # )
175
-
176
- # run_button = gr.Button("Run", scale=0, variant="primary")
177
-
178
- # result = gr.Image(label="Result", show_label=False)
179
-
180
- # with gr.Accordion("Advanced Settings", open=False):
181
- # negative_prompt = gr.Text(
182
- # label="Negative prompt",
183
- # max_lines=1,
184
- # placeholder="Enter a negative prompt",
185
- # visible=False,
186
- # )
187
-
188
- # seed = gr.Slider(
189
- # label="Seed",
190
- # minimum=0,
191
- # maximum=MAX_SEED,
192
- # step=1,
193
- # value=0,
194
- # )
195
-
196
- # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
197
-
198
- # with gr.Row():
199
- # width = gr.Slider(
200
- # label="Width",
201
- # minimum=256,
202
- # maximum=MAX_IMAGE_SIZE,
203
- # step=32,
204
- # value=1024, # Replace with defaults that work for your model
205
- # )
206
-
207
- # height = gr.Slider(
208
- # label="Height",
209
- # minimum=256,
210
- # maximum=MAX_IMAGE_SIZE,
211
- # step=32,
212
- # value=1024, # Replace with defaults that work for your model
213
- # )
214
-
215
- # with gr.Row():
216
- # guidance_scale = gr.Slider(
217
- # label="Guidance scale",
218
- # minimum=0.0,
219
- # maximum=10.0,
220
- # step=0.1,
221
- # value=0.0, # Replace with defaults that work for your model
222
- # )
223
-
224
- # num_inference_steps = gr.Slider(
225
- # label="Number of inference steps",
226
- # minimum=1,
227
- # maximum=50,
228
- # step=1,
229
- # value=2, # Replace with defaults that work for your model
230
- # )
231
-
232
- # gr.Examples(examples=examples, inputs=[prompt])
233
- # gr.on(
234
- # triggers=[run_button.click, prompt.submit],
235
- # fn=infer,
236
- # inputs=[
237
- # prompt,
238
- # negative_prompt,
239
- # seed,
240
- # randomize_seed,
241
- # # width,
242
- # # height,
243
- # # guidance_scale,
244
- # # num_inference_steps,
245
- # ],
246
- # outputs=[result, seed],
247
- # )
248
-
249
- # if __name__ == "__main__":
250
- # demo.launch()
 
1
  import gradio as gr
2
  import os
3
+ import spaces
4
+ import torch
5
+ import tempfile
6
+ from gradio_imageslider import ImageSlider
7
 
8
  import torch
9
  from PIL import Image
10
  from diffusers import (
11
  AutoencoderKL,
 
 
12
  )
13
 
14
  from transformers import CLIPTextModel, CLIPTokenizer
 
23
  device = "cuda" if torch.cuda.is_available() else "cpu"
24
  model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use
25
 
 
 
 
26
  torch_dtype = torch.float32
27
 
 
 
 
 
 
28
  vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False)
29
  unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False)
30
  text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype)
 
39
 
40
  pipe = pipe.to(device)
41
 
 
 
 
42
 
43
  # @spaces.GPU #[uncomment to use ZeroGPU]
44
  def infer(
45
  input_image,
46
  progress=gr.Progress(track_tqdm=True),
47
  ):
48
+
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  pipe_out = pipe(
50
  input_image,
51
  processing_res=768,
 
74
  "wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg"
75
  ]
76
 
77
+ # css = """
78
+ # #col-container {
79
+ # margin: 0 auto;
80
+ # max-width: 640px;
81
+ # }
82
+ # #example-gallery {
83
+ # height: 80px; /* 设置缩略图高度 */
84
+ # width: auto; /* 保持宽高比 */
85
+ # margin: 0 auto; /* 图片间距 */
86
+ # cursor: pointer; /* 鼠标指针变为手型 */
87
+ # }
88
+ # """
89
+
90
  css = """
91
+ #img-display-container {
92
+ max-height: 100vh;
93
+ }
94
+ #img-display-input {
95
+ max-height: 80vh;
96
+ }
97
+ #img-display-output {
98
+ max-height: 80vh;
99
  }
100
+ #download {
101
+ height: 62px;
 
 
 
102
  }
103
  """
104
 
105
+ title = "# DepthMaster"
106
+ description = """**Official demo for DepthMaster**.
107
+ Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details."""
108
+
109
+
110
  with gr.Blocks(css=css) as demo:
111
+ gr.Markdown(title)
112
+ gr.Markdown(description)
113
  gr.Markdown(" ### Depth Estimation with DepthMaster.")
114
  # with gr.Column(elem_id="col-container"):
115
  # gr.Markdown(" # Depth Estimation")
116
  with gr.Row():
117
  with gr.Column():
118
+ input_image = gr.Image(label="Input Image", type="pil", elem_id="img-display-input")
119
  with gr.Column():
120
+ # depth_img_slider = ImageSlider(label="Depth Map with Slider View", elem_id="img-display-output", position=0.5)
121
  depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
+ # 计算按钮
124
+ compute_button = gr.Button(value="Compute Depth")
125
 
126
  # 设置计算按钮的回调
127
  compute_button.click(
128
  fn=infer, # 回调函数
129
+ inputs=[input_image], # 输入
130
+ outputs=[depth_map] # 输出
131
  )
132
 
133
+ example_files = os.listdir('wild_example')
134
+ example_files.sort()
135
+ example_files = [os.path.join('wild_example', filename) for filename in example_files]
136
+ examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_map], fn=infer)
137
+
138
+
139
  # 启动 Gradio 应用
140
+ demo.queue().launch(share=True)