Spaces:
Running
Running
Reinitialize repository without history
Browse files
app.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
6 |
from depthmaster import DepthMasterPipeline
|
7 |
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
|
8 |
|
@@ -21,9 +28,15 @@ torch_dtype = torch.float32
|
|
21 |
|
22 |
# pipe = DepthMasterPipeline.from_pretrained('eval', torch_dtype=torch_dtype)
|
23 |
# unet = UNet2DConditionModel.from_pretrained(os.path.join('eval', f'unet'))
|
24 |
-
pipe = DepthMasterPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
25 |
-
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype)
|
26 |
-
pipe.unet = unet
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
try:
|
29 |
pipe.enable_xformers_memory_efficient_attention()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
+
from diffusers import (
|
7 |
+
AutoencoderKL,
|
8 |
+
DiffusionPipeline,
|
9 |
+
# UNet2DConditionModel,
|
10 |
+
)
|
11 |
|
12 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
13 |
from depthmaster import DepthMasterPipeline
|
14 |
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
|
15 |
|
|
|
28 |
|
29 |
# pipe = DepthMasterPipeline.from_pretrained('eval', torch_dtype=torch_dtype)
|
30 |
# unet = UNet2DConditionModel.from_pretrained(os.path.join('eval', f'unet'))
|
31 |
+
# pipe = DepthMasterPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
32 |
+
# unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype)
|
33 |
+
# pipe.unet = unet
|
34 |
+
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False)
|
35 |
+
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False)
|
36 |
+
text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype)
|
37 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer", torch_dtype=torch_dtype)
|
38 |
+
pipe = DepthMasterPipeline(vae=vae, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer)
|
39 |
+
|
40 |
|
41 |
try:
|
42 |
pipe.enable_xformers_memory_efficient_attention()
|