Spaces:
Running
Running
first commit
Browse files- app.py +0 -7
- depthmaster/depthmaster_pipeline.py +0 -1
- run.py +0 -253
app.py
CHANGED
@@ -1,14 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
import logging
|
5 |
-
import os
|
6 |
-
from glob import glob
|
7 |
|
8 |
-
import numpy as np
|
9 |
import torch
|
10 |
from PIL import Image
|
11 |
-
from tqdm.auto import tqdm
|
12 |
|
13 |
from depthmaster import DepthMasterPipeline
|
14 |
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
from depthmaster import DepthMasterPipeline
|
7 |
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
|
depthmaster/depthmaster_pipeline.py
CHANGED
@@ -23,7 +23,6 @@
|
|
23 |
# --------------------------------------------------------------------------
|
24 |
|
25 |
|
26 |
-
import logging
|
27 |
from typing import Dict, Optional, Union
|
28 |
|
29 |
import numpy as np
|
|
|
23 |
# --------------------------------------------------------------------------
|
24 |
|
25 |
|
|
|
26 |
from typing import Dict, Optional, Union
|
27 |
|
28 |
import numpy as np
|
run.py
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
# Last modified: 2025-01-14
|
2 |
-
#
|
3 |
-
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
|
4 |
-
#
|
5 |
-
# This file has been modified from the original version.
|
6 |
-
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
7 |
-
#
|
8 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
-
# you may not use this file except in compliance with the License.
|
10 |
-
# You may obtain a copy of the License at
|
11 |
-
#
|
12 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
-
#
|
14 |
-
# Unless required by applicable law or agreed to in writing, software
|
15 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
-
# See the License for the specific language governing permissions and
|
18 |
-
# limitations under the License.
|
19 |
-
# --------------------------------------------------------------------------
|
20 |
-
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
21 |
-
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
|
22 |
-
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
|
23 |
-
# --------------------------------------------------------------------------
|
24 |
-
|
25 |
-
|
26 |
-
import argparse
|
27 |
-
import logging
|
28 |
-
import os
|
29 |
-
from glob import glob
|
30 |
-
|
31 |
-
import numpy as np
|
32 |
-
import torch
|
33 |
-
from PIL import Image
|
34 |
-
from tqdm.auto import tqdm
|
35 |
-
|
36 |
-
from depthmaster import DepthMasterPipeline
|
37 |
-
|
38 |
-
EXTENSION_LIST = [".jpg", ".png"]
|
39 |
-
|
40 |
-
|
41 |
-
if "__main__" == __name__:
|
42 |
-
logging.basicConfig(level=logging.INFO)
|
43 |
-
|
44 |
-
# -------------------- Arguments --------------------
|
45 |
-
parser = argparse.ArgumentParser(
|
46 |
-
description="Run single-image depth estimation using Marigold."
|
47 |
-
)
|
48 |
-
parser.add_argument(
|
49 |
-
"--checkpoint",
|
50 |
-
type=str,
|
51 |
-
default="ckpt/depthmaster",
|
52 |
-
help="Checkpoint path or hub name.",
|
53 |
-
)
|
54 |
-
|
55 |
-
parser.add_argument(
|
56 |
-
"--input_rgb_dir",
|
57 |
-
type=str,
|
58 |
-
required=True,
|
59 |
-
help="Path to the input image folder.",
|
60 |
-
)
|
61 |
-
|
62 |
-
parser.add_argument(
|
63 |
-
"--output_dir", type=str, required=True, help="Output directory."
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
parser.add_argument(
|
68 |
-
"--half_precision",
|
69 |
-
"--fp16",
|
70 |
-
action="store_true",
|
71 |
-
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
|
72 |
-
)
|
73 |
-
|
74 |
-
# resolution setting
|
75 |
-
parser.add_argument(
|
76 |
-
"--processing_res",
|
77 |
-
type=int,
|
78 |
-
default=None,
|
79 |
-
help="Maximum resolution of processing. 0 for using input image resolution. Default: 768.",
|
80 |
-
)
|
81 |
-
parser.add_argument(
|
82 |
-
"--output_processing_res",
|
83 |
-
action="store_true",
|
84 |
-
help="When input is resized, out put depth at resized operating resolution. Default: False.",
|
85 |
-
)
|
86 |
-
parser.add_argument(
|
87 |
-
"--resample_method",
|
88 |
-
choices=["bilinear", "bicubic", "nearest"],
|
89 |
-
default="bilinear",
|
90 |
-
help="Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`. Default: `bilinear`",
|
91 |
-
)
|
92 |
-
|
93 |
-
# depth map colormap
|
94 |
-
parser.add_argument(
|
95 |
-
"--color_map",
|
96 |
-
type=str,
|
97 |
-
default="Spectral",
|
98 |
-
help="Colormap used to render depth predictions.",
|
99 |
-
)
|
100 |
-
|
101 |
-
# other settings
|
102 |
-
parser.add_argument(
|
103 |
-
"--batch_size",
|
104 |
-
type=int,
|
105 |
-
default=0,
|
106 |
-
help="Inference batch size. Default: 0 (will be set automatically).",
|
107 |
-
)
|
108 |
-
parser.add_argument(
|
109 |
-
"--apple_silicon",
|
110 |
-
action="store_true",
|
111 |
-
help="Flag of running on Apple Silicon.",
|
112 |
-
)
|
113 |
-
|
114 |
-
args = parser.parse_args()
|
115 |
-
|
116 |
-
checkpoint_path = args.checkpoint
|
117 |
-
input_rgb_dir = args.input_rgb_dir
|
118 |
-
output_dir = args.output_dir
|
119 |
-
|
120 |
-
half_precision = args.half_precision
|
121 |
-
|
122 |
-
processing_res = args.processing_res
|
123 |
-
match_input_res = not args.output_processing_res
|
124 |
-
if 0 == processing_res and match_input_res is False:
|
125 |
-
logging.warning(
|
126 |
-
"Processing at native resolution without resizing output might NOT lead to exactly the same resolution, due to the padding and pooling properties of conv layers."
|
127 |
-
)
|
128 |
-
resample_method = args.resample_method
|
129 |
-
|
130 |
-
color_map = args.color_map
|
131 |
-
batch_size = args.batch_size
|
132 |
-
apple_silicon = args.apple_silicon
|
133 |
-
if apple_silicon and 0 == batch_size:
|
134 |
-
batch_size = 1 # set default batchsize
|
135 |
-
|
136 |
-
# -------------------- Preparation --------------------
|
137 |
-
# Output directories
|
138 |
-
output_dir_color = os.path.join(output_dir, "depth_colored")
|
139 |
-
output_dir_tif = os.path.join(output_dir, "depth_bw")
|
140 |
-
# output_dir_npy = os.path.join(output_dir, "depth_npy")
|
141 |
-
os.makedirs(output_dir, exist_ok=True)
|
142 |
-
os.makedirs(output_dir_color, exist_ok=True)
|
143 |
-
os.makedirs(output_dir_tif, exist_ok=True)
|
144 |
-
# os.makedirs(output_dir_npy, exist_ok=True)
|
145 |
-
logging.info(f"output dir = {output_dir}")
|
146 |
-
|
147 |
-
# -------------------- Device --------------------
|
148 |
-
if apple_silicon:
|
149 |
-
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
150 |
-
device = torch.device("mps:0")
|
151 |
-
else:
|
152 |
-
device = torch.device("cpu")
|
153 |
-
logging.warning("MPS is not available. Running on CPU will be slow.")
|
154 |
-
else:
|
155 |
-
if torch.cuda.is_available():
|
156 |
-
device = torch.device("cuda")
|
157 |
-
else:
|
158 |
-
device = torch.device("cpu")
|
159 |
-
logging.warning("CUDA is not available. Running on CPU will be slow.")
|
160 |
-
logging.info(f"device = {device}")
|
161 |
-
|
162 |
-
# -------------------- Data --------------------
|
163 |
-
rgb_filename_list = glob(os.path.join(input_rgb_dir, "*"))
|
164 |
-
rgb_filename_list = [
|
165 |
-
f for f in rgb_filename_list if os.path.splitext(f)[1].lower() in EXTENSION_LIST
|
166 |
-
]
|
167 |
-
rgb_filename_list = sorted(rgb_filename_list)
|
168 |
-
n_images = len(rgb_filename_list)
|
169 |
-
if n_images > 0:
|
170 |
-
logging.info(f"Found {n_images} images")
|
171 |
-
else:
|
172 |
-
logging.error(f"No image found in '{input_rgb_dir}'")
|
173 |
-
exit(1)
|
174 |
-
|
175 |
-
# -------------------- Model --------------------
|
176 |
-
if half_precision:
|
177 |
-
dtype = torch.float16
|
178 |
-
variant = "fp16"
|
179 |
-
logging.info(
|
180 |
-
f"Running with half precision ({dtype}), might lead to suboptimal result."
|
181 |
-
)
|
182 |
-
else:
|
183 |
-
dtype = torch.float32
|
184 |
-
variant = None
|
185 |
-
|
186 |
-
pipe: DepthMasterPipeline = DepthMasterPipeline.from_pretrained(
|
187 |
-
checkpoint_path, variant=variant, torch_dtype=dtype
|
188 |
-
)
|
189 |
-
|
190 |
-
try:
|
191 |
-
pipe.enable_xformers_memory_efficient_attention()
|
192 |
-
except ImportError:
|
193 |
-
pass # run without xformers
|
194 |
-
|
195 |
-
pipe = pipe.to(device)
|
196 |
-
logging.info(
|
197 |
-
f"scale_invariant: {pipe.scale_invariant}, shift_invariant: {pipe.shift_invariant}"
|
198 |
-
)
|
199 |
-
|
200 |
-
# Print out config
|
201 |
-
logging.info(
|
202 |
-
f"Inference settings: checkpoint = `{checkpoint_path}`, "
|
203 |
-
f"processing resolution = {processing_res or pipe.default_processing_resolution}, "
|
204 |
-
f"color_map = {color_map}."
|
205 |
-
)
|
206 |
-
|
207 |
-
# -------------------- Inference and saving --------------------
|
208 |
-
with torch.no_grad():
|
209 |
-
os.makedirs(output_dir, exist_ok=True)
|
210 |
-
|
211 |
-
for rgb_path in tqdm(rgb_filename_list, desc="Estimating depth", leave=True):
|
212 |
-
# Read input image
|
213 |
-
input_image = Image.open(rgb_path)
|
214 |
-
|
215 |
-
# Predict depth
|
216 |
-
with torch.no_grad():
|
217 |
-
pipe_out = pipe(
|
218 |
-
input_image,
|
219 |
-
processing_res=processing_res,
|
220 |
-
match_input_res=match_input_res,
|
221 |
-
batch_size=batch_size,
|
222 |
-
color_map=color_map,
|
223 |
-
show_progress_bar=True,
|
224 |
-
resample_method=resample_method,
|
225 |
-
)
|
226 |
-
|
227 |
-
depth_pred: np.ndarray = pipe_out.depth_np
|
228 |
-
depth_colored: Image.Image = pipe_out.depth_colored
|
229 |
-
|
230 |
-
# Save as npy
|
231 |
-
rgb_name_base = os.path.splitext(os.path.basename(rgb_path))[0]
|
232 |
-
pred_name_base = rgb_name_base + "_pred"
|
233 |
-
# npy_save_path = os.path.join(output_dir_npy, f"{pred_name_base}.npy")
|
234 |
-
# if os.path.exists(npy_save_path):
|
235 |
-
# logging.warning(f"Existing file: '{npy_save_path}' will be overwritten")
|
236 |
-
# np.save(npy_save_path, depth_pred)
|
237 |
-
|
238 |
-
# Save as 16-bit uint png
|
239 |
-
depth_to_save = (depth_pred * 65535.0).astype(np.uint16)
|
240 |
-
png_save_path = os.path.join(output_dir_tif, f"{pred_name_base}.png")
|
241 |
-
if os.path.exists(png_save_path):
|
242 |
-
logging.warning(f"Existing file: '{png_save_path}' will be overwritten")
|
243 |
-
Image.fromarray(depth_to_save).save(png_save_path, mode="I;16")
|
244 |
-
|
245 |
-
# Colorize
|
246 |
-
colored_save_path = os.path.join(
|
247 |
-
output_dir_color, f"{pred_name_base}_colored.png"
|
248 |
-
)
|
249 |
-
if os.path.exists(colored_save_path):
|
250 |
-
logging.warning(
|
251 |
-
f"Existing file: '{colored_save_path}' will be overwritten"
|
252 |
-
)
|
253 |
-
depth_colored.save(colored_save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|