DepthMaster / app.py
zysong212's picture
Update app.py
b83e83e verified
import gradio as gr
import os
import torch
import torch
from PIL import Image
from diffusers import (
AutoencoderKL,
)
from transformers import CLIPTextModel, CLIPTokenizer
from depthmaster import DepthMasterPipeline
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
def load_example(example_image):
# 返回选中的图片
return example_image
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use
torch_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False)
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False)
text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype)
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer", torch_dtype=torch_dtype)
pipe = DepthMasterPipeline(vae=vae, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer)
try:
pipe.enable_xformers_memory_efficient_attention()
except ImportError:
pass # run without xformers
pipe = pipe.to(device)
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
input_image,
progress=gr.Progress(track_tqdm=True),
):
pipe_out = pipe(
input_image,
processing_res=768,
match_input_res=True,
batch_size=1,
color_map="Spectral",
show_progress_bar=True,
resample_method="bilinear",
)
# depth_pred: np.ndarray = pipe_out.depth_np
depth_colored: Image.Image = pipe_out.depth_colored
return depth_colored
# 默认图像路径
example_images = [
"wild_example/000000000776.jpg",
"wild_example/800x.jpg",
"wild_example/000000055950.jpg",
"wild_example/53441037037_c2cbd91ad2_k.jpg",
"wild_example/53501906161_6109e3da29_b.jpg",
"wild_example/m_1e31af1c.jpg",
"wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg"
]
# css = """
# #col-container {
# margin: 0 auto;
# max-width: 640px;
# }
# #example-gallery {
# height: 80px; /* 设置缩略图高度 */
# width: auto; /* 保持宽高比 */
# margin: 0 auto; /* 图片间距 */
# cursor: pointer; /* 鼠标指针变为手型 */
# }
# """
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
title = "# DepthMaster"
description = """**Official demo for DepthMaster**.
Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details."""
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(" ### Depth Estimation with DepthMaster.")
# with gr.Column(elem_id="col-container"):
# gr.Markdown(" # Depth Estimation")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", elem_id="img-display-input")
with gr.Column():
# depth_img_slider = ImageSlider(label="Depth Map with Slider View", elem_id="img-display-output", position=0.5)
depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map")
# 计算按钮
compute_button = gr.Button(value="Compute Depth")
# 设置计算按钮的回调
compute_button.click(
fn=infer, # 回调函数
inputs=[input_image], # 输入
outputs=[depth_map] # 输出
)
example_files = os.listdir('wild_example')
example_files.sort()
example_files = [os.path.join('wild_example', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_map], fn=infer)
# 启动 Gradio 应用
demo.queue().launch(share=True)