Spaces:
Running
Running
import gradio as gr | |
import os | |
import torch | |
import torch | |
from PIL import Image | |
from diffusers import ( | |
AutoencoderKL, | |
) | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from depthmaster import DepthMasterPipeline | |
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel | |
def load_example(example_image): | |
# 返回选中的图片 | |
return example_image | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use | |
torch_dtype = torch.float32 | |
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False) | |
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False) | |
text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype) | |
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer", torch_dtype=torch_dtype) | |
pipe = DepthMasterPipeline(vae=vae, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer) | |
try: | |
pipe.enable_xformers_memory_efficient_attention() | |
except ImportError: | |
pass # run without xformers | |
pipe = pipe.to(device) | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
input_image, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
pipe_out = pipe( | |
input_image, | |
processing_res=768, | |
match_input_res=True, | |
batch_size=1, | |
color_map="Spectral", | |
show_progress_bar=True, | |
resample_method="bilinear", | |
) | |
# depth_pred: np.ndarray = pipe_out.depth_np | |
depth_colored: Image.Image = pipe_out.depth_colored | |
return depth_colored | |
# 默认图像路径 | |
example_images = [ | |
"wild_example/000000000776.jpg", | |
"wild_example/800x.jpg", | |
"wild_example/000000055950.jpg", | |
"wild_example/53441037037_c2cbd91ad2_k.jpg", | |
"wild_example/53501906161_6109e3da29_b.jpg", | |
"wild_example/m_1e31af1c.jpg", | |
"wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg" | |
] | |
# css = """ | |
# #col-container { | |
# margin: 0 auto; | |
# max-width: 640px; | |
# } | |
# #example-gallery { | |
# height: 80px; /* 设置缩略图高度 */ | |
# width: auto; /* 保持宽高比 */ | |
# margin: 0 auto; /* 图片间距 */ | |
# cursor: pointer; /* 鼠标指针变为手型 */ | |
# } | |
# """ | |
css = """ | |
#img-display-container { | |
max-height: 100vh; | |
} | |
#img-display-input { | |
max-height: 80vh; | |
} | |
#img-display-output { | |
max-height: 80vh; | |
} | |
#download { | |
height: 62px; | |
} | |
""" | |
title = "# DepthMaster" | |
description = """**Official demo for DepthMaster**. | |
Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details.""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Markdown(" ### Depth Estimation with DepthMaster.") | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(" # Depth Estimation") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil", elem_id="img-display-input") | |
with gr.Column(): | |
# depth_img_slider = ImageSlider(label="Depth Map with Slider View", elem_id="img-display-output", position=0.5) | |
depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map") | |
# 计算按钮 | |
compute_button = gr.Button(value="Compute Depth") | |
# 设置计算按钮的回调 | |
compute_button.click( | |
fn=infer, # 回调函数 | |
inputs=[input_image], # 输入 | |
outputs=[depth_map] # 输出 | |
) | |
example_files = os.listdir('wild_example') | |
example_files.sort() | |
example_files = [os.path.join('wild_example', filename) for filename in example_files] | |
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_map], fn=infer) | |
# 启动 Gradio 应用 | |
demo.queue().launch(share=True) | |