Spaces:
Running
Running
File size: 15,381 Bytes
5a3d50d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# Last modified: 2025-01-14
#
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
#
# This file has been modified from the original version.
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
# --------------------------------------------------------------------------
from typing import Dict, Optional, Union
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
# UNet2DConditionModel,
)
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput
from PIL import Image
from torch.utils.data import DataLoader, TensorDataset
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import pil_to_tensor, resize
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from .util.image_util import (
chw2hwc,
colorize_depth_maps,
get_tv_resample_method,
resize_max_res,
)
class DepthMasterDepthOutput(BaseOutput):
"""
Output class for monocular depth prediction pipeline.
Args:
depth_np (`np.ndarray`):
Predicted depth map, with depth values in the range of [0, 1].
depth_colored (`PIL.Image.Image`):
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
uncertainty (`None` or `np.ndarray`):
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
"""
depth_np: np.ndarray
depth_colored: Union[None, Image.Image]
uncertainty: Union[None, np.ndarray]
class DepthMasterPipeline(DiffusionPipeline):
"""
Pipeline for monocular depth estimation using DepthMaster.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
unet (`UNet2DConditionModel`):
Conditional U-Net to denoise the depth latent, conditioned on image latent.
vae (`AutoencoderKL`):
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
to and from latent representations.
scheduler (`DDIMScheduler`):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
text_encoder (`CLIPTextModel`):
Text-encoder, for empty text embedding.
tokenizer (`CLIPTokenizer`):
CLIP tokenizer.
scale_invariant (`bool`, *optional*):
A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in
the model config. When used together with the `shift_invariant=True` flag, the model is also called
"affine-invariant". NB: overriding this value is not supported.
shift_invariant (`bool`, *optional*):
A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in
the model config. When used together with the `scale_invariant=True` flag, the model is also called
"affine-invariant". NB: overriding this value is not supported.
default_denoising_steps (`int`, *optional*):
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
quality with the given model. This value must be set in the model config. When the pipeline is called
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
reasonable results with various model flavors compatible with the pipeline, such as those relying on very
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
default_processing_resolution (`int`, *optional*):
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
default value is used. This is required to ensure reasonable results with various model flavors trained
with varying optimal processing resolution values.
"""
rgb_latent_scale_factor = 0.18215
depth_latent_scale_factor = 0.18215
def __init__(
self,
unet: UNet2DConditionModel,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
scale_invariant: Optional[bool] = True,
shift_invariant: Optional[bool] = True,
default_processing_resolution: Optional[int] = None,
):
super().__init__()
# unet = UNet2DConditionModel.from_pretrained('/zssd/szy/Marigold_rgb2d/ckpt/eval/unet')
self.register_modules(
unet=unet,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
self.register_to_config(
scale_invariant=scale_invariant,
shift_invariant=shift_invariant,
default_processing_resolution=default_processing_resolution,
)
self.scale_invariant = scale_invariant
self.shift_invariant = shift_invariant
self.default_processing_resolution = default_processing_resolution
self.empty_text_embed = None
@torch.no_grad()
def __call__(
self,
input_image: Union[Image.Image, torch.Tensor],
processing_res: Optional[int] = None,
match_input_res: bool = True,
resample_method: str = "bilinear",
batch_size: int = 0,
color_map: str = "Spectral",
show_progress_bar: bool = True,
) -> DepthMasterDepthOutput:
"""
Function invoked when calling the pipeline.
Args:
input_image (`Image`):
Input RGB (or gray-scale) image.
processing_res (`int`, *optional*, defaults to `None`):
Effective processing resolution. When set to `0`, processes at the original image resolution. This
produces crisper predictions, but may also lead to the overall loss of global context. The default
value `None` resolves to the optimal value from the model config.
match_input_res (`bool`, *optional*, defaults to `True`):
Resize depth prediction to match input resolution.
Only valid if `processing_res` > 0.
resample_method: (`str`, *optional*, defaults to `bilinear`):
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
batch_size (`int`, *optional*, defaults to `0`):
Inference batch size, no bigger than `num_ensemble`.
If set to 0, the script will automatically decide the proper batch size.
show_progress_bar (`bool`, *optional*, defaults to `True`):
Display a progress bar of diffusion denoising.
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
Colormap used to colorize the depth map.
Returns:
`DepthMasterDepthOutput`: Output class for DepthMaster monocular depth prediction pipeline, including:
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
"""
# Model-specific optimal default values leading to fast and reasonable results.
if processing_res is None:
processing_res = self.default_processing_resolution
assert processing_res >= 0
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
# ----------------- Image Preprocess -----------------
# Convert to torch tensor
if isinstance(input_image, Image.Image):
input_image = input_image.convert("RGB")
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
rgb = pil_to_tensor(input_image)
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
elif isinstance(input_image, torch.Tensor):
rgb = input_image
else:
raise TypeError(f"Unknown input type: {type(input_image) = }")
input_size = rgb.shape
assert (
4 == rgb.dim() and 3 == input_size[-3]
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
# --------------- Image Processing ------------------------
# Resize image
if processing_res > 0:
rgb = resize_max_res(
rgb,
max_edge_resolution=processing_res,
resample_method=resample_method,
)
# Normalize rgb values
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
rgb_norm = rgb_norm.to(self.dtype)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
# ----------------- Predicting depth -----------------
# Batch repeated input image
duplicated_rgb = rgb_norm.expand(1, -1, -1, -1)
single_rgb_dataset = TensorDataset(duplicated_rgb)
# find the batch size
if batch_size > 0:
_bs = batch_size
else:
_bs = 1
single_rgb_loader = DataLoader(
single_rgb_dataset, batch_size=_bs, shuffle=False
)
# Predict depth maps (batched)
depth_pred_ls = []
if show_progress_bar:
iterable = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable = single_rgb_loader
for batch in iterable:
(batched_img,) = batch # here the image is still around 0-1
depth_pred_raw = self.single_infer(
rgb_in=batched_img,
)
depth_pred_ls.append(depth_pred_raw.detach())
depth_preds = torch.concat(depth_pred_ls, dim=0)
torch.cuda.empty_cache() # clear vram cache for ensembling
depth_pred = depth_preds
pred_uncert = None
# Resize back to original resolution
if match_input_res:
depth_pred = resize(
depth_pred,
input_size[-2:],
interpolation=resample_method,
antialias=True,
)
# Convert to numpy
depth_pred = depth_pred.squeeze()
depth_pred = depth_pred.cpu().numpy()
if pred_uncert is not None:
pred_uncert = pred_uncert.squeeze().cpu().numpy()
# Clip output range
depth_pred = depth_pred.clip(0, 1)
# Colorize
if color_map is not None:
depth_colored = colorize_depth_maps(
depth_pred, 0, 1, cmap=color_map
).squeeze() # [3, H, W], value in (0, 1)
depth_colored = (depth_colored * 255).astype(np.uint8)
depth_colored_hwc = chw2hwc(depth_colored)
depth_colored_img = Image.fromarray(depth_colored_hwc)
else:
depth_colored_img = None
return DepthMasterDepthOutput(
depth_np=depth_pred,
depth_colored=depth_colored_img,
uncertainty=pred_uncert,
)
def encode_empty_text(self):
"""
Encode text embedding for empty prompt
"""
prompt = ""
text_inputs = self.tokenizer(
prompt,
padding="do_not_pad",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]
@torch.no_grad()
def single_infer(
self,
rgb_in: torch.Tensor,
) -> torch.Tensor:
"""
Perform an individual depth prediction without ensembling.
Args:
rgb_in (`torch.Tensor`):
Input RGB image.
Returns:
`torch.Tensor`: Predicted depth map.
"""
device = self.device
rgb_in = rgb_in.to(device)
# Encode image
rgb_latent = self.encode_rgb(rgb_in) # 1/8 Resolution with a channel nums of 4.
# Batched empty text embedding
if self.empty_text_embed is None:
self.encode_empty_text()
batch_empty_text_embed = self.empty_text_embed.repeat(
(rgb_latent.shape[0], 1, 1)
).to(device) # [B, 2, 1024]
unet_output = self.unet(
rgb_latent,
1,
encoder_hidden_states=batch_empty_text_embed,
).sample # [B, 4, h, w]
torch.cuda.empty_cache()
depth = self.decode_depth(unet_output) # [B, 1, h, w]
# clip prediction
depth = torch.clip(depth, -1.0, 1.0)
# shift to [0, 1]
depth = (depth + 1.0) / 2.0
return depth
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
h = self.vae.encoder(rgb_in)
moments = self.vae.quant_conv(h)
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
rgb_latent = mean * self.rgb_latent_scale_factor
return rgb_latent
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
"""
Decode depth latent into depth map.
Args:
depth_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
# scale latent
depth_latent = depth_latent / self.depth_latent_scale_factor
# decode
z = self.vae.post_quant_conv(depth_latent)
stacked = self.vae.decoder(z)
# mean of output channels
depth_mean = stacked.mean(dim=1, keepdim=True)
return depth_mean
|