File size: 15,381 Bytes
5a3d50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Last modified: 2025-01-14
#
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
#
# This file has been modified from the original version.
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
# --------------------------------------------------------------------------


from typing import Dict, Optional, Union

import numpy as np
import torch
from diffusers import (
    AutoencoderKL,
    DiffusionPipeline,
    # UNet2DConditionModel,
)
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput
from PIL import Image
from torch.utils.data import DataLoader, TensorDataset
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import pil_to_tensor, resize
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from .util.image_util import (
    chw2hwc,
    colorize_depth_maps,
    get_tv_resample_method,
    resize_max_res,
)

class DepthMasterDepthOutput(BaseOutput):
    """
    Output class for monocular depth prediction pipeline.

    Args:
        depth_np (`np.ndarray`):
            Predicted depth map, with depth values in the range of [0, 1].
        depth_colored (`PIL.Image.Image`):
            Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
        uncertainty (`None` or `np.ndarray`):
            Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
    """

    depth_np: np.ndarray
    depth_colored: Union[None, Image.Image]
    uncertainty: Union[None, np.ndarray]


class DepthMasterPipeline(DiffusionPipeline):
    """
    Pipeline for monocular depth estimation using DepthMaster.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        unet (`UNet2DConditionModel`):
            Conditional U-Net to denoise the depth latent, conditioned on image latent.
        vae (`AutoencoderKL`):
            Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
            to and from latent representations.
        scheduler (`DDIMScheduler`):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents.
        text_encoder (`CLIPTextModel`):
            Text-encoder, for empty text embedding.
        tokenizer (`CLIPTokenizer`):
            CLIP tokenizer.
        scale_invariant (`bool`, *optional*):
            A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in
            the model config. When used together with the `shift_invariant=True` flag, the model is also called
            "affine-invariant". NB: overriding this value is not supported.
        shift_invariant (`bool`, *optional*):
            A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in
            the model config. When used together with the `scale_invariant=True` flag, the model is also called
            "affine-invariant". NB: overriding this value is not supported.
        default_denoising_steps (`int`, *optional*):
            The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
            quality with the given model. This value must be set in the model config. When the pipeline is called
            without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
            reasonable results with various model flavors compatible with the pipeline, such as those relying on very
            short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
        default_processing_resolution (`int`, *optional*):
            The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
            the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
            default value is used. This is required to ensure reasonable results with various model flavors trained
            with varying optimal processing resolution values.
    """

    rgb_latent_scale_factor = 0.18215
    depth_latent_scale_factor = 0.18215

    def __init__(
        self,
        unet: UNet2DConditionModel,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        scale_invariant: Optional[bool] = True,
        shift_invariant: Optional[bool] = True,
        default_processing_resolution: Optional[int] = None,
    ):
        super().__init__()

        # unet = UNet2DConditionModel.from_pretrained('/zssd/szy/Marigold_rgb2d/ckpt/eval/unet')

        self.register_modules(
            unet=unet,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
        )
        self.register_to_config(
            scale_invariant=scale_invariant,
            shift_invariant=shift_invariant,
            default_processing_resolution=default_processing_resolution,
        )

        self.scale_invariant = scale_invariant
        self.shift_invariant = shift_invariant
        self.default_processing_resolution = default_processing_resolution

        self.empty_text_embed = None

    @torch.no_grad()
    def __call__(
        self,
        input_image: Union[Image.Image, torch.Tensor],
        processing_res: Optional[int] = None,
        match_input_res: bool = True,
        resample_method: str = "bilinear",
        batch_size: int = 0,
        color_map: str = "Spectral",
        show_progress_bar: bool = True,
    ) -> DepthMasterDepthOutput:
        """
        Function invoked when calling the pipeline.

        Args:
            input_image (`Image`):
                Input RGB (or gray-scale) image.
            processing_res (`int`, *optional*, defaults to `None`):
                Effective processing resolution. When set to `0`, processes at the original image resolution. This
                produces crisper predictions, but may also lead to the overall loss of global context. The default
                value `None` resolves to the optimal value from the model config.
            match_input_res (`bool`, *optional*, defaults to `True`):
                Resize depth prediction to match input resolution.
                Only valid if `processing_res` > 0.
            resample_method: (`str`, *optional*, defaults to `bilinear`):
                Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
            batch_size (`int`, *optional*, defaults to `0`):
                Inference batch size, no bigger than `num_ensemble`.
                If set to 0, the script will automatically decide the proper batch size.
            show_progress_bar (`bool`, *optional*, defaults to `True`):
                Display a progress bar of diffusion denoising.
            color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
                Colormap used to colorize the depth map.
        Returns:
            `DepthMasterDepthOutput`: Output class for DepthMaster monocular depth prediction pipeline, including:
            - **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
            - **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
        """
        # Model-specific optimal default values leading to fast and reasonable results.
        if processing_res is None:
            processing_res = self.default_processing_resolution

        assert processing_res >= 0

        resample_method: InterpolationMode = get_tv_resample_method(resample_method)

        # ----------------- Image Preprocess -----------------
        # Convert to torch tensor
        if isinstance(input_image, Image.Image):
            input_image = input_image.convert("RGB")
            # convert to torch tensor [H, W, rgb] -> [rgb, H, W]
            rgb = pil_to_tensor(input_image)
            rgb = rgb.unsqueeze(0)  # [1, rgb, H, W]
        elif isinstance(input_image, torch.Tensor):
            rgb = input_image
        else:
            raise TypeError(f"Unknown input type: {type(input_image) = }")
        input_size = rgb.shape
        assert (
            4 == rgb.dim() and 3 == input_size[-3]
        ), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
        # --------------- Image Processing ------------------------
        # Resize image
        if processing_res > 0:
            rgb = resize_max_res(
                rgb,
                max_edge_resolution=processing_res,
                resample_method=resample_method,
            )

        # Normalize rgb values
        rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0  #  [0, 255] -> [-1, 1]
        rgb_norm = rgb_norm.to(self.dtype)
        assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0

        # ----------------- Predicting depth -----------------
        # Batch repeated input image
        duplicated_rgb = rgb_norm.expand(1, -1, -1, -1)
        single_rgb_dataset = TensorDataset(duplicated_rgb)
        # find the batch size
        if batch_size > 0:
            _bs = batch_size
        else:
            _bs = 1

        single_rgb_loader = DataLoader(
            single_rgb_dataset, batch_size=_bs, shuffle=False
        )

        # Predict depth maps (batched)
        depth_pred_ls = []
        if show_progress_bar:
            iterable = tqdm(
                single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
            )
        else:
            iterable = single_rgb_loader
        for batch in iterable:
            (batched_img,) = batch  # here the image is still around 0-1
            depth_pred_raw = self.single_infer(
                rgb_in=batched_img,
            )
            depth_pred_ls.append(depth_pred_raw.detach())
        depth_preds = torch.concat(depth_pred_ls, dim=0)
        torch.cuda.empty_cache()  # clear vram cache for ensembling

        depth_pred = depth_preds
        pred_uncert = None

        # Resize back to original resolution
        if match_input_res:
            depth_pred = resize(
                depth_pred,
                input_size[-2:],
                interpolation=resample_method,
                antialias=True,
            )

        # Convert to numpy
        depth_pred = depth_pred.squeeze()
        depth_pred = depth_pred.cpu().numpy()
        if pred_uncert is not None:
            pred_uncert = pred_uncert.squeeze().cpu().numpy()

        # Clip output range
        depth_pred = depth_pred.clip(0, 1)

        # Colorize
        if color_map is not None:
            depth_colored = colorize_depth_maps(
                depth_pred, 0, 1, cmap=color_map
            ).squeeze()  # [3, H, W], value in (0, 1)
            depth_colored = (depth_colored * 255).astype(np.uint8)
            depth_colored_hwc = chw2hwc(depth_colored)
            depth_colored_img = Image.fromarray(depth_colored_hwc)
        else:
            depth_colored_img = None

        return DepthMasterDepthOutput(
            depth_np=depth_pred,
            depth_colored=depth_colored_img,
            uncertainty=pred_uncert,
        )


    def encode_empty_text(self):
        """
        Encode text embedding for empty prompt
        """
        prompt = ""
        text_inputs = self.tokenizer(
            prompt,
            padding="do_not_pad",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
        self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]

    @torch.no_grad()
    def single_infer(
        self,
        rgb_in: torch.Tensor,
    ) -> torch.Tensor:
        """
        Perform an individual depth prediction without ensembling.

        Args:
            rgb_in (`torch.Tensor`):
                Input RGB image.
        Returns:
            `torch.Tensor`: Predicted depth map.
        """
        device = self.device
        rgb_in = rgb_in.to(device)

        # Encode image
        rgb_latent = self.encode_rgb(rgb_in) # 1/8 Resolution with a channel nums of 4. 


        # Batched empty text embedding
        if self.empty_text_embed is None:
            self.encode_empty_text()
        batch_empty_text_embed = self.empty_text_embed.repeat(
            (rgb_latent.shape[0], 1, 1)
        ).to(device)  # [B, 2, 1024]


        unet_output = self.unet(
                rgb_latent,
                1,
                encoder_hidden_states=batch_empty_text_embed,
            ).sample  # [B, 4, h, w]

        torch.cuda.empty_cache()
        depth = self.decode_depth(unet_output) # [B, 1, h, w]

        # clip prediction
        depth = torch.clip(depth, -1.0, 1.0)
        # shift to [0, 1]
        depth = (depth + 1.0) / 2.0

        return depth

    def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
        """
        Encode RGB image into latent.

        Args:
            rgb_in (`torch.Tensor`):
                Input RGB image to be encoded.

        Returns:
            `torch.Tensor`: Image latent.
        """
        # encode
        h = self.vae.encoder(rgb_in)
        moments = self.vae.quant_conv(h)
        mean, logvar = torch.chunk(moments, 2, dim=1)
        # scale latent
        rgb_latent = mean * self.rgb_latent_scale_factor
        return rgb_latent

    def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
        """
        Decode depth latent into depth map.

        Args:
            depth_latent (`torch.Tensor`):
                Depth latent to be decoded.

        Returns:
            `torch.Tensor`: Decoded depth map.
        """
        # scale latent
        depth_latent = depth_latent / self.depth_latent_scale_factor
        # decode
        z = self.vae.post_quant_conv(depth_latent)
        stacked = self.vae.decoder(z)
        # mean of output channels
        depth_mean = stacked.mean(dim=1, keepdim=True)
        return depth_mean