Spaces:
Running
on
A10G
Running
on
A10G
File size: 6,517 Bytes
f2a2544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from accelerate.logging import get_logger
from .embedder import CameraEmbedder
from .transformer import TransformerDecoder
from .rendering.synthesizer import TriplaneSynthesizer
logger = get_logger(__name__)
class ModelLRM(nn.Module):
"""
Full model of the basic single-view large reconstruction model.
"""
def __init__(self, camera_embed_dim: int, rendering_samples_per_ray: int,
transformer_dim: int, transformer_layers: int, transformer_heads: int,
triplane_low_res: int, triplane_high_res: int, triplane_dim: int,
encoder_freeze: bool = True, encoder_type: str = 'dino',
encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768):
super().__init__()
# attributes
self.encoder_feat_dim = encoder_feat_dim
self.camera_embed_dim = camera_embed_dim
self.triplane_low_res = triplane_low_res
self.triplane_high_res = triplane_high_res
self.triplane_dim = triplane_dim
# modules
self.encoder = self._encoder_fn(encoder_type)(
model_name=encoder_model_name,
freeze=encoder_freeze,
)
self.camera_embedder = CameraEmbedder(
raw_dim=12+4, embed_dim=camera_embed_dim,
)
# initialize pos_embed with 1/sqrt(dim) * N(0, 1)
self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, transformer_dim) * (1. / transformer_dim) ** 0.5)
self.transformer = TransformerDecoder(
block_type='cond_mod',
num_layers=transformer_layers, num_heads=transformer_heads,
inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=camera_embed_dim,
)
self.upsampler = nn.ConvTranspose2d(transformer_dim, triplane_dim, kernel_size=2, stride=2, padding=0)
self.synthesizer = TriplaneSynthesizer(
triplane_dim=triplane_dim, samples_per_ray=rendering_samples_per_ray,
)
@staticmethod
def _encoder_fn(encoder_type: str):
encoder_type = encoder_type.lower()
assert encoder_type in ['dino', 'dinov2'], "Unsupported encoder type"
if encoder_type == 'dino':
from .encoders.dino_wrapper import DinoWrapper
logger.info("Using DINO as the encoder")
return DinoWrapper
elif encoder_type == 'dinov2':
from .encoders.dinov2_wrapper import Dinov2Wrapper
logger.info("Using DINOv2 as the encoder")
return Dinov2Wrapper
def forward_transformer(self, image_feats, camera_embeddings):
assert image_feats.shape[0] == camera_embeddings.shape[0], \
"Batch size mismatch for image_feats and camera_embeddings!"
N = image_feats.shape[0]
x = self.pos_embed.repeat(N, 1, 1) # [N, L, D]
x = self.transformer(
x,
cond=image_feats,
mod=camera_embeddings,
)
return x
def reshape_upsample(self, tokens):
N = tokens.shape[0]
H = W = self.triplane_low_res
x = tokens.view(N, 3, H, W, -1)
x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W]
x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W]
x = self.upsampler(x) # [3*N, D', H', W']
x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W']
x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W']
x = x.contiguous()
return x
@torch.compile
def forward_planes(self, image, camera):
# image: [N, C_img, H_img, W_img]
# camera: [N, D_cam_raw]
N = image.shape[0]
# encode image
image_feats = self.encoder(image)
assert image_feats.shape[-1] == self.encoder_feat_dim, \
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}"
# embed camera
camera_embeddings = self.camera_embedder(camera)
assert camera_embeddings.shape[-1] == self.camera_embed_dim, \
f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}"
# transformer generating planes
tokens = self.forward_transformer(image_feats, camera_embeddings)
planes = self.reshape_upsample(tokens)
assert planes.shape[0] == N, "Batch size mismatch for planes"
assert planes.shape[1] == 3, "Planes should have 3 channels"
return planes
def forward(self, image, source_camera, render_cameras, render_anchors, render_resolutions, render_bg_colors, render_region_size: int):
# image: [N, C_img, H_img, W_img]
# source_camera: [N, D_cam_raw]
# render_cameras: [N, M, D_cam_render]
# render_anchors: [N, M, 2]
# render_resolutions: [N, M, 1]
# render_bg_colors: [N, M, 1]
# render_region_size: int
assert image.shape[0] == source_camera.shape[0], "Batch size mismatch for image and source_camera"
assert image.shape[0] == render_cameras.shape[0], "Batch size mismatch for image and render_cameras"
assert image.shape[0] == render_anchors.shape[0], "Batch size mismatch for image and render_anchors"
assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors"
N, M = render_cameras.shape[:2]
planes = self.forward_planes(image, source_camera)
# render target views
render_results = self.synthesizer(planes, render_cameras, render_anchors, render_resolutions, render_bg_colors, render_region_size)
assert render_results['images_rgb'].shape[0] == N, "Batch size mismatch for render_results"
assert render_results['images_rgb'].shape[1] == M, "Number of rendered views should be consistent with render_cameras"
return {
'planes': planes,
**render_results,
}
|