Spaces:
Running
on
Zero
Running
on
Zero
from torch import Tensor, nn | |
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer | |
class HFEmbedder(nn.Module): | |
def __init__(self, version: str, max_length: int, **hf_kwargs): | |
super().__init__() | |
self.is_clip = version.startswith("openai") | |
self.max_length = max_length | |
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" | |
if self.is_clip: | |
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) | |
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) | |
else: | |
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) | |
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) | |
self.hf_module = self.hf_module.eval().requires_grad_(False) | |
def forward(self, text: list[str]) -> Tensor: | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=False, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
outputs = self.hf_module( | |
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), | |
attention_mask=None, | |
output_hidden_states=False, | |
) | |
return outputs[self.output_key] | |