# Kokoro-82M ONNX Runtime Inference ![Downloads](https://img.shields.io/github/downloads/yakhyo/kokoro-82m-onnx/total) [![GitHub Repo stars](https://img.shields.io/github/stars/yakhyo/kokoro-82m-onnx)](https://github.com/yakhyo/kokoro-82m-onnx/stargazers) [![GitHub Repository](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/yakhyo/kokoro-82m-onnx) This repository contains minimal code and resources for inference using the **Kokoro-82M** model. The repository supports inference using **ONNX Runtime**.
Machine learning models rely on large datasets and complex algorithms to identify patterns and make predictions. Did you know that honey never spoils? Archaeologists have found pots of honey in ancient Egyptian tombs that are over 3,000 years old and still edible!
## Features - **ONNX Runtime Inference**: Kokoro-82M (v0_19) Minimal ONNX Runtime Inference code. It supports `en-us` and `en-gb`. --- ## Installation 1. Clone the repository: ```bash git clone https://github.com/yakhyo/kokoro-82m.git cd kokoro-82m ``` 2. Install dependencies: ```bash pip install -r requirements.txt ``` 3. Install `espeak` for text-to-speech functionality: Linux: ```bash apt-get install espeak -y ``` --- ## Usage ### Download ONNX Model [click to download](https://github.com/yakhyo/kokoro-82m/releases/download/v0.0.1/kokoro-v0_19.onnx) ### Jupyter Notebook Inference Example Run inference using the jupyter notebook: [example.ipynb](example.ipynb) ### CLI Inference Specify input text and model weights in `inference.py` then run: ```bash python inference.py ``` ### Gradio App Run below start Gradio App ```bash python app.py ```