Spaces:
Running
Running
import os | |
import gradio as gr | |
import tempfile | |
import soundfile as sf | |
from models import Tokenizer, Kokoro | |
# Function to fetch available style vectors dynamically | |
def get_style_vector_choices(directory="voices"): | |
return [file for file in os.listdir(directory) if file.endswith(".pt")] | |
def get_onnx_models(directory="weights"): | |
return [file for file in os.listdir(directory) if file.endswith(".onnx")] | |
# Function to perform TTS using your local model | |
def local_tts( | |
text: str, | |
model_path: str, | |
style_vector: str, | |
output_file_format: str = "wav", | |
speed: float = 1.0 | |
): | |
if len(text) > 0: | |
try: | |
tokenizer = Tokenizer() | |
style_vector_path = os.path.join("voices", style_vector) | |
model_path = os.path.join("weights", model_path) | |
inference = Kokoro(model_path, style_vector_path, tokenizer=tokenizer, lang='en-us') | |
audio, sample_rate = inference.generate_audio(text, speed=speed) | |
with tempfile.NamedTemporaryFile(suffix=f".{output_file_format}", delete=False) as temp_file: | |
sf.write(temp_file.name, audio, sample_rate) | |
temp_file_path = temp_file.name | |
return temp_file_path | |
except Exception as e: | |
raise gr.Error(f"An error occurred during TTS inference: {str(e)}") | |
else: | |
raise gr.Error("Input text cannot be empty.") | |
# Get the list of available style vectors | |
style_vector_choices = get_style_vector_choices() | |
onnx_models_choices = get_onnx_models() | |
# sample texts and their corresponding audio | |
sample_outputs = [ | |
("Educational Note", "Machine learning models rely on large datasets and complex algorithms to identify patterns and make predictions.", "assets/edu_note.wav"), | |
("Fun Fact", "Did you know that honey never spoils? Archaeologists have found pots of honey in ancient Egyptian tombs that are over 3,000 years old and still edible!", "assets/fun_fact.wav"), | |
("Thanks", "Thank you for listening to this audio. It was generated by the Kokoro TTS model.", "assets/thanks.wav") | |
] | |
example_texts = [ | |
["Machine learning models rely on large datasets and complex algorithms to identify patterns and make predictions."], | |
["Did you know that honey never spoils? Archaeologists have found pots of honey in ancient Egyptian tombs that are over 3,000 years old and still edible!"], | |
["Thank you for listening to this audio. It was generated by the Kokoro TTS model."] | |
] | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## <center> Kokoro TTS ONNX Inference | [GitHub Link](https://github.com/yakhyo/kokoro-onnx) </center>") | |
# Model-specific inputs | |
with gr.Row(variant="panel"): | |
model_path = gr.Dropdown(choices=onnx_models_choices, label="ONNX Model Path", value=onnx_models_choices[0]) | |
style_vector = gr.Dropdown(choices=style_vector_choices, label="Style Vector", value=style_vector_choices[0]) | |
output_file_format = gr.Dropdown(choices=["wav", "mp3"], label="Output Format", value="wav") | |
speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Speed") | |
# Text input and output | |
text = gr.Textbox( | |
label="Input Text", | |
placeholder="Enter text to convert to speech." | |
) | |
btn = gr.Button("Generate Speech") | |
output_audio = gr.Audio(label="Generated Audio", type="filepath") | |
# Link inputs and outputs | |
btn.click( | |
fn=local_tts, | |
inputs=[text, model_path, style_vector, output_file_format, speed], | |
outputs=output_audio | |
) | |
# Add example texts | |
gr.Examples( | |
examples=example_texts, | |
inputs=[text], | |
label="Click an example to populate the input text" | |
) | |
# Add example texts and audios | |
gr.Markdown("### Sample Texts and Audio") | |
for topic, sample_text, sample_audio in sample_outputs: | |
with gr.Row(): | |
gr.Textbox(value=sample_text, label=topic, interactive=False) | |
gr.Audio(value=sample_audio, label="Example Audio", type="filepath", interactive=False) | |
demo.launch(server_name="0.0.0.0") | |