kokoro-onnx / app.py
yakhyo's picture
Update app.py
1ea9ebb verified
import os
import gradio as gr
import tempfile
import soundfile as sf
from models import Tokenizer, Kokoro
# Function to fetch available style vectors dynamically
def get_style_vector_choices(directory="voices"):
return [file for file in os.listdir(directory) if file.endswith(".pt")]
def get_onnx_models(directory="weights"):
return [file for file in os.listdir(directory) if file.endswith(".onnx")]
# Function to perform TTS using your local model
def local_tts(
text: str,
model_path: str,
style_vector: str,
output_file_format: str = "wav",
speed: float = 1.0
):
if len(text) > 0:
try:
tokenizer = Tokenizer()
style_vector_path = os.path.join("voices", style_vector)
model_path = os.path.join("weights", model_path)
inference = Kokoro(model_path, style_vector_path, tokenizer=tokenizer, lang='en-us')
audio, sample_rate = inference.generate_audio(text, speed=speed)
with tempfile.NamedTemporaryFile(suffix=f".{output_file_format}", delete=False) as temp_file:
sf.write(temp_file.name, audio, sample_rate)
temp_file_path = temp_file.name
return temp_file_path
except Exception as e:
raise gr.Error(f"An error occurred during TTS inference: {str(e)}")
else:
raise gr.Error("Input text cannot be empty.")
# Get the list of available style vectors
style_vector_choices = get_style_vector_choices()
onnx_models_choices = get_onnx_models()
# sample texts and their corresponding audio
sample_outputs = [
("Educational Note", "Machine learning models rely on large datasets and complex algorithms to identify patterns and make predictions.", "assets/edu_note.wav"),
("Fun Fact", "Did you know that honey never spoils? Archaeologists have found pots of honey in ancient Egyptian tombs that are over 3,000 years old and still edible!", "assets/fun_fact.wav"),
("Thanks", "Thank you for listening to this audio. It was generated by the Kokoro TTS model.", "assets/thanks.wav")
]
example_texts = [
["Machine learning models rely on large datasets and complex algorithms to identify patterns and make predictions."],
["Did you know that honey never spoils? Archaeologists have found pots of honey in ancient Egyptian tombs that are over 3,000 years old and still edible!"],
["Thank you for listening to this audio. It was generated by the Kokoro TTS model."]
]
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## <center> Kokoro TTS ONNX Inference | [GitHub Link](https://github.com/yakhyo/kokoro-onnx) </center>")
# Model-specific inputs
with gr.Row(variant="panel"):
model_path = gr.Dropdown(choices=onnx_models_choices, label="ONNX Model Path", value=onnx_models_choices[0])
style_vector = gr.Dropdown(choices=style_vector_choices, label="Style Vector", value=style_vector_choices[0])
output_file_format = gr.Dropdown(choices=["wav", "mp3"], label="Output Format", value="wav")
speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Speed")
# Text input and output
text = gr.Textbox(
label="Input Text",
placeholder="Enter text to convert to speech."
)
btn = gr.Button("Generate Speech")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
# Link inputs and outputs
btn.click(
fn=local_tts,
inputs=[text, model_path, style_vector, output_file_format, speed],
outputs=output_audio
)
# Add example texts
gr.Examples(
examples=example_texts,
inputs=[text],
label="Click an example to populate the input text"
)
# Add example texts and audios
gr.Markdown("### Sample Texts and Audio")
for topic, sample_text, sample_audio in sample_outputs:
with gr.Row():
gr.Textbox(value=sample_text, label=topic, interactive=False)
gr.Audio(value=sample_audio, label="Example Audio", type="filepath", interactive=False)
demo.launch(server_name="0.0.0.0")