|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
import gradio as gr |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def build_transform(input_size): |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) |
|
]) |
|
return transform |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
target_ratios = sorted( |
|
set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num), |
|
key=lambda x: x[0] * x[1] |
|
) |
|
target_aspect_ratio = target_ratios[0] |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [ |
|
resized_img.crop(( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
)) |
|
for i in range(blocks) |
|
] |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def load_image(image, input_size=448, max_num=12): |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
|
|
path = 'OpenGVLab/InternVL2_5-78B' |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
device_map="auto" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) |
|
|
|
|
|
def process_image(image): |
|
try: |
|
pixel_values = load_image(image, max_num=12).to(torch.bfloat16).cuda() |
|
generation_config = dict(max_new_tokens=1024, do_sample=True) |
|
question = '<image>\nExtract text from the image, respond with only the extracted text.' |
|
response = model.chat(tokenizer, pixel_values, question, generation_config) |
|
return response |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
|
|
def chatbot(input_text, history=[]): |
|
try: |
|
generation_config = dict(max_new_tokens=1024, do_sample=True) |
|
response, updated_history = model.chat(tokenizer, None, input_text, generation_config, history=history, return_history=True) |
|
return response, updated_history |
|
except Exception as e: |
|
return f"Error: {str(e)}", history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("Image Processing"): |
|
gr.Markdown("Upload an image and get detailed responses using the InternVL model.") |
|
image_input = gr.Image(type="pil") |
|
image_output = gr.Textbox(label="Response") |
|
image_btn = gr.Button("Process") |
|
image_btn.click(process_image, inputs=image_input, outputs=image_output) |
|
|
|
with gr.Tab("Chatbot"): |
|
gr.Markdown("Chat with the model.") |
|
chatbot_input = gr.Textbox(label="Your Message") |
|
chatbot_output = gr.Textbox(label="Response") |
|
chatbot_history = gr.State([]) |
|
chatbot_btn = gr.Button("Send") |
|
chatbot_btn.click(chatbot, inputs=[chatbot_input, chatbot_history], outputs=[chatbot_output, chatbot_history]) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |
|
|