gpuocr / app.py
xzerus's picture
Update app.py
1744947 verified
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import gradio as gr
# Constants for ImageNet preprocessing
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# Build the image transform
def build_transform(input_size):
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
return transform
# Dynamic preprocessing
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = sorted(
set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num),
key=lambda x: x[0] * x[1]
)
target_aspect_ratio = target_ratios[0]
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = [
resized_img.crop((
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
))
for i in range(blocks)
]
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
# Load image dynamically from user upload
def load_image(image, input_size=448, max_num=12):
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# Load the model and tokenizer
path = 'OpenGVLab/InternVL2_5-78B'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto" # Use device map for efficient memory handling
)
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# Define the function for Gradio image interface
def process_image(image):
try:
pixel_values = load_image(image, max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nExtract text from the image, respond with only the extracted text.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
return response
except Exception as e:
return f"Error: {str(e)}"
# Define the function for text-based chatbot interface
def chatbot(input_text, history=[]):
try:
generation_config = dict(max_new_tokens=1024, do_sample=True)
response, updated_history = model.chat(tokenizer, None, input_text, generation_config, history=history, return_history=True)
return response, updated_history
except Exception as e:
return f"Error: {str(e)}", history
# Create Gradio Tabs
with gr.Blocks() as demo:
with gr.Tab("Image Processing"):
gr.Markdown("Upload an image and get detailed responses using the InternVL model.")
image_input = gr.Image(type="pil")
image_output = gr.Textbox(label="Response")
image_btn = gr.Button("Process")
image_btn.click(process_image, inputs=image_input, outputs=image_output)
with gr.Tab("Chatbot"):
gr.Markdown("Chat with the model.")
chatbot_input = gr.Textbox(label="Your Message")
chatbot_output = gr.Textbox(label="Response")
chatbot_history = gr.State([])
chatbot_btn = gr.Button("Send")
chatbot_btn.click(chatbot, inputs=[chatbot_input, chatbot_history], outputs=[chatbot_output, chatbot_history])
# Launch the Gradio app
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)