File size: 11,686 Bytes
5755412 4cf237b 2f957f0 13b1681 f82c314 13b1681 4fa9540 f82c314 eccd8f6 1ce8e5a 13b1681 2f957f0 4df6952 2f957f0 adb5084 b5aeb95 2f957f0 f82c314 b26485f 4df7266 c8df7a5 b26485f bfe03fe f82c314 13b1681 4df6952 13b1681 1ce8e5a 13b1681 c8df7a5 4df6952 b26485f 4df6952 b26485f c8df7a5 4df6952 b26485f 4df6952 b26485f 13b1681 5755412 4df6952 13b1681 eccd8f6 f82c314 13b1681 1ce8e5a 13b1681 4e66e3d 4fa9540 4df6952 4fa9540 4e66e3d 4fa9540 f82c314 4e66e3d f82c314 4e66e3d f82c314 13b1681 c8df7a5 f82c314 c8df7a5 f82c314 13b1681 f82c314 4cf237b f82c314 13b1681 f82c314 13b1681 4df6952 13b1681 f82c314 13b1681 1ce8e5a 13b1681 f82c314 13b1681 b5aeb95 b26485f c8df7a5 b26485f f82c314 13b1681 f82c314 4df6952 13b1681 4cf237b 4df6952 13b1681 4cf237b 13b1681 f82c314 b446d41 b5aeb95 4df7266 b5aeb95 2f957f0 b5aeb95 2f957f0 4e66e3d b26485f 4df7266 b26485f 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d eccd8f6 2f957f0 b5aeb95 4df7266 b5aeb95 2f957f0 b5aeb95 2f957f0 c8df7a5 2f957f0 4df6952 2f957f0 4df6952 2f957f0 4df6952 2f957f0 4df6952 2f957f0 c8df7a5 2f957f0 4df6952 2f957f0 4df6952 2f957f0 c8df7a5 2f957f0 4df6952 b446d41 4df7266 b26485f 4df6952 4e66e3d 2f957f0 4e66e3d 4df7266 4e66e3d 4cf237b 2f957f0 4df7266 f82c314 4e66e3d f82c314 eccd8f6 4df7266 b5aeb95 4df7266 b5aeb95 4df7266 b5aeb95 2f957f0 4df6952 2f957f0 4df6952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import gradio as gr
import spaces
import torch
import faiss
import numpy as np
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
pipeline,
BitsAndBytesConfig,
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel
from sentence_transformers import SentenceTransformer
# Global variables for pipelines and settings.
TEXT_PIPELINE = None
COMPARISON_PIPELINE = None
NUM_EXAMPLES = 50
@spaces.GPU(duration=300)
def finetune_small_subset():
"""
Fine-tunes the custom R1 model on a small subset of the ServiceNow-AI/R1-Distill-SFT dataset.
Steps:
1) Loads the model from "wuhp/myr1" (using files from the "myr1" subfolder via trust_remote_code).
2) Applies 4-bit quantization and prepares for QLoRA training.
3) Fine-tunes on the dataset (mapping "problem" to prompt and "solution" to target).
4) Saves the LoRA adapter to "finetuned_myr1".
5) Reloads the adapter for inference.
"""
# Specify the configuration ("v0" or "v1") explicitly.
ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
# Load the custom model configuration from the repository.
base_config = AutoConfig.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True,
)
# (Optionally apply local overrides here if needed.)
tokenizer = AutoTokenizer.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
base_model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=base_config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
base_model = prepare_model_for_kbit_training(base_model)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "v_proj"],
task_type=TaskType.CAUSAL_LM,
)
lora_model = get_peft_model(base_model, lora_config)
def tokenize_fn(ex):
text = (
f"Problem: {ex['problem']}\n\n"
f"Solution: {ex['solution']}"
)
return tokenizer(text, truncation=True, max_length=512)
ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names)
ds.set_format("torch")
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args = TrainingArguments(
output_dir="finetuned_myr1",
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
logging_steps=5,
save_steps=999999,
save_total_limit=1,
fp16=False,
)
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=ds,
data_collator=collator,
)
trainer.train()
trainer.model.save_pretrained("finetuned_myr1")
tokenizer.save_pretrained("finetuned_myr1")
base_model_2 = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=base_config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
base_model_2 = prepare_model_for_kbit_training(base_model_2)
lora_model_2 = PeftModel.from_pretrained(
base_model_2,
"finetuned_myr1",
)
global TEXT_PIPELINE
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)
return "Finetuning complete. Model loaded for inference."
def ensure_pipeline():
"""
Loads the base model (without LoRA) if no fine-tuned model is available.
"""
global TEXT_PIPELINE
if TEXT_PIPELINE is None:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
base_config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=base_config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
return TEXT_PIPELINE
def ensure_comparison_pipeline():
"""
Loads the official R1 model pipeline if not already loaded.
"""
global COMPARISON_PIPELINE
if COMPARISON_PIPELINE is None:
config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
model = AutoModelForCausalLM.from_pretrained(
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
config=config,
device_map="auto"
)
COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
return COMPARISON_PIPELINE
@spaces.GPU(duration=120)
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
"""
Direct generation without retrieval using the custom R1 model.
"""
pipe = ensure_pipeline()
out = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
return out[0]["generated_text"]
@spaces.GPU(duration=120)
def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
"""
Compare outputs between your custom R1 model and the official R1 model.
"""
local_pipe = ensure_pipeline()
comp_pipe = ensure_comparison_pipeline()
local_out = local_pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
comp_out = comp_pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
return local_out[0]["generated_text"], comp_out[0]["generated_text"]
class ConversationRetriever:
"""
A FAISS-based retriever using SentenceTransformer for embedding.
"""
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2", embed_dim=384):
self.embed_model = SentenceTransformer(model_name)
self.embed_dim = embed_dim
self.index = faiss.IndexFlatL2(embed_dim)
self.texts = []
self.vectors = []
self.ids = []
self.id_counter = 0
def add_text(self, text):
if not text.strip():
return
emb = self.embed_model.encode([text], convert_to_numpy=True)
vec = emb[0].astype(np.float32)
self.index.add(vec.reshape(1, -1))
self.texts.append(text)
self.vectors.append(vec)
self.ids.append(self.id_counter)
self.id_counter += 1
def search(self, query, top_k=3):
q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32)
q_vec = q_emb[0].reshape(1, -1)
distances, indices = self.index.search(q_vec, top_k)
results = []
for dist, idx in zip(distances[0], indices[0]):
if idx < len(self.texts):
results.append((self.texts[idx], dist))
return results
retriever = ConversationRetriever()
def build_rag_prompt(user_query, retrieved_chunks):
"""
Builds a prompt for retrieval-augmented generation.
"""
context_str = ""
for i, (chunk, dist) in enumerate(retrieved_chunks):
context_str += f"Chunk #{i+1} (similarity ~ {dist:.2f}):\n{chunk}\n\n"
prompt = (
f"User's Query:\n{user_query}\n\n"
f"Relevant Context:\n{context_str}"
"Assistant:"
)
return prompt
@spaces.GPU(duration=120)
def chat_rag(user_input, history, temperature, top_p, min_new_tokens, max_new_tokens):
"""
Chat with retrieval augmentation.
"""
pipe = ensure_pipeline()
retriever.add_text(f"User: {user_input}")
top_k = 3
results = retriever.search(user_input, top_k=top_k)
prompt = build_rag_prompt(user_input, results)
output = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
if output.startswith(prompt):
assistant_reply = output[len(prompt):].strip()
else:
assistant_reply = output.strip()
retriever.add_text(f"Assistant: {assistant_reply}")
history.append([user_input, assistant_reply])
return history, history
# Build the Gradio interface.
with gr.Blocks() as demo:
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on ServiceNow-AI/R1-Distill-SFT subset (up to 5 min)")
status_box = gr.Textbox(label="Finetune Status")
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
gr.Markdown("## Direct Generation (No Retrieval) using Custom R1")
prompt_in = gr.Textbox(lines=3, label="Prompt")
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens")
max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
output_box = gr.Textbox(label="Custom R1 Output", lines=8)
gen_btn = gr.Button("Generate with Custom R1")
gen_btn.click(
fn=predict,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=output_box
)
gr.Markdown("## Compare Custom R1 vs Official R1")
compare_btn = gr.Button("Compare")
out_custom = gr.Textbox(label="Custom R1 Output", lines=6)
out_official = gr.Textbox(label="Official R1 Output", lines=6)
compare_btn.click(
fn=compare_models,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=[out_custom, out_official]
)
gr.Markdown("## Chat with Retrieval-Augmented Memory")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(label="RAG Chat")
chat_state = gr.State([])
user_input = gr.Textbox(
show_label=False,
placeholder="Ask a question...",
lines=2
)
send_btn = gr.Button("Send")
user_input.submit(
fn=chat_rag,
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
outputs=[chat_state, chatbot]
)
send_btn.click(
fn=chat_rag,
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
outputs=[chat_state, chatbot]
)
demo.launch()
|