|
import gradio as gr |
|
import spaces |
|
import torch |
|
import faiss |
|
import numpy as np |
|
|
|
from datasets import load_dataset |
|
from transformers import ( |
|
AutoConfig, |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
DataCollatorForLanguageModeling, |
|
Trainer, |
|
TrainingArguments, |
|
pipeline, |
|
BitsAndBytesConfig, |
|
) |
|
|
|
|
|
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel |
|
|
|
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
|
|
|
|
|
|
TEXT_PIPELINE = None |
|
COMPARISON_PIPELINE = None |
|
NUM_EXAMPLES = 50 |
|
|
|
@spaces.GPU(duration=300) |
|
def finetune_small_subset(): |
|
""" |
|
1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style), |
|
2) Adds LoRA adapters (trainable), |
|
3) Trains on a small subset of the Magpie dataset, |
|
4) Saves LoRA adapter to 'finetuned_myr1', |
|
5) Reloads LoRA adapters for inference in a pipeline. |
|
""" |
|
|
|
|
|
ds = load_dataset( |
|
"Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B", |
|
split="train" |
|
) |
|
|
|
unique_ids = list(set(ds["conversation_id"])) |
|
single_id = unique_ids[0] |
|
ds = ds.filter(lambda x: x["conversation_id"] == single_id) |
|
|
|
ds = ds.select(range(min(NUM_EXAMPLES, len(ds)))) |
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
) |
|
|
|
config = AutoConfig.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
trust_remote_code=True |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
trust_remote_code=True |
|
) |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
config=config, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
|
|
base_model = prepare_model_for_kbit_training(base_model) |
|
|
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
target_modules=["q_proj", "v_proj"], |
|
task_type=TaskType.CAUSAL_LM, |
|
) |
|
lora_model = get_peft_model(base_model, lora_config) |
|
|
|
|
|
def tokenize_fn(ex): |
|
text = ( |
|
f"Instruction: {ex['instruction']}\n\n" |
|
f"Response: {ex['response']}" |
|
) |
|
return tokenizer(text, truncation=True, max_length=512) |
|
|
|
ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names) |
|
ds.set_format("torch") |
|
|
|
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="finetuned_myr1", |
|
num_train_epochs=1, |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=2, |
|
logging_steps=5, |
|
save_steps=999999, |
|
save_total_limit=1, |
|
fp16=False, |
|
) |
|
|
|
trainer = Trainer( |
|
model=lora_model, |
|
args=training_args, |
|
train_dataset=ds, |
|
data_collator=collator, |
|
) |
|
trainer.train() |
|
|
|
|
|
trainer.model.save_pretrained("finetuned_myr1") |
|
tokenizer.save_pretrained("finetuned_myr1") |
|
|
|
|
|
base_model_2 = AutoModelForCausalLM.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
config=config, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
base_model_2 = prepare_model_for_kbit_training(base_model_2) |
|
|
|
lora_model_2 = PeftModel.from_pretrained( |
|
base_model_2, |
|
"finetuned_myr1", |
|
) |
|
|
|
global TEXT_PIPELINE |
|
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer) |
|
|
|
return "Finetuning complete. Model loaded for inference." |
|
|
|
|
|
def ensure_pipeline(): |
|
""" |
|
If we haven't finetuned yet (TEXT_PIPELINE is None), |
|
load the base model in 4-bit with NO LoRA. |
|
""" |
|
global TEXT_PIPELINE |
|
if TEXT_PIPELINE is None: |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
) |
|
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True) |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"wuhp/myr1", |
|
subfolder="myr1", |
|
config=config, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer) |
|
return TEXT_PIPELINE |
|
|
|
|
|
def ensure_comparison_pipeline(): |
|
""" |
|
Load the DeepSeek model pipeline if not already loaded. |
|
""" |
|
global COMPARISON_PIPELINE |
|
if COMPARISON_PIPELINE is None: |
|
config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B") |
|
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B", |
|
config=config, |
|
device_map="auto" |
|
) |
|
COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
return COMPARISON_PIPELINE |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens): |
|
""" |
|
Simple single-prompt generation (no retrieval). |
|
""" |
|
pipe = ensure_pipeline() |
|
out = pipe( |
|
prompt, |
|
temperature=float(temperature), |
|
top_p=float(top_p), |
|
min_new_tokens=int(min_new_tokens), |
|
max_new_tokens=int(max_new_tokens), |
|
do_sample=True |
|
) |
|
return out[0]["generated_text"] |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens): |
|
""" |
|
Compare local pipeline vs. DeepSeek side-by-side. |
|
""" |
|
local_pipe = ensure_pipeline() |
|
comp_pipe = ensure_comparison_pipeline() |
|
|
|
local_out = local_pipe( |
|
prompt, |
|
temperature=float(temperature), |
|
top_p=float(top_p), |
|
min_new_tokens=int(min_new_tokens), |
|
max_new_tokens=int(max_new_tokens), |
|
do_sample=True |
|
) |
|
comp_out = comp_pipe( |
|
prompt, |
|
temperature=float(temperature), |
|
top_p=float(top_p), |
|
min_new_tokens=int(min_new_tokens), |
|
max_new_tokens=int(max_new_tokens), |
|
do_sample=True |
|
) |
|
return local_out[0]["generated_text"], comp_out[0]["generated_text"] |
|
|
|
|
|
|
|
|
|
|
|
class ConversationRetriever: |
|
""" |
|
A simple in-memory store + FAISS for retrieval of conversation chunks. |
|
Each chunk is embedded via SentenceTransformer. On a new user query, |
|
we embed the query, do similarity search, and retrieve top-k relevant chunks. |
|
""" |
|
|
|
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2", embed_dim=384): |
|
""" |
|
model_name: embedding model for messages |
|
embed_dim: dimension of the embeddings from that model |
|
""" |
|
self.embed_model = SentenceTransformer(model_name) |
|
self.embed_dim = embed_dim |
|
|
|
|
|
|
|
self.index = faiss.IndexFlatL2(embed_dim) |
|
self.texts = [] |
|
self.vectors = [] |
|
self.ids = [] |
|
|
|
self.id_counter = 0 |
|
|
|
def add_text(self, text): |
|
""" |
|
Add a new text chunk to the vector store. |
|
Could chunk it up if desired, but here we treat the entire text as one chunk. |
|
""" |
|
if not text.strip(): |
|
return |
|
|
|
emb = self.embed_model.encode([text], convert_to_numpy=True) |
|
vec = emb[0].astype(np.float32) |
|
self.index.add(vec.reshape(1, -1)) |
|
|
|
self.texts.append(text) |
|
self.vectors.append(vec) |
|
self.ids.append(self.id_counter) |
|
|
|
self.id_counter += 1 |
|
|
|
def search(self, query, top_k=3): |
|
""" |
|
Given a query, embed it, do similarity search in FAISS, return top-k texts. |
|
""" |
|
q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32) |
|
q_vec = q_emb[0].reshape(1, -1) |
|
distances, indices = self.index.search(q_vec, top_k) |
|
|
|
|
|
results = [] |
|
for dist, idx in zip(distances[0], indices[0]): |
|
if idx < len(self.texts): |
|
results.append((self.texts[idx], dist)) |
|
return results |
|
|
|
|
|
|
|
|
|
|
|
retriever = ConversationRetriever() |
|
|
|
def build_rag_prompt(user_query, retrieved_chunks): |
|
""" |
|
Construct a prompt that includes: |
|
- The user's new query |
|
- A "Relevant Context" section from retrieved chunks |
|
- "Assistant:" to let the model continue |
|
Feel free to customize the formatting as you like. |
|
""" |
|
context_str = "" |
|
for i, (chunk, dist) in enumerate(retrieved_chunks): |
|
context_str += f"Chunk #{i+1} (similarity score ~ {dist:.2f}):\n{chunk}\n\n" |
|
|
|
prompt = ( |
|
f"User's Query:\n{user_query}\n\n" |
|
f"Relevant Context from Conversation:\n{context_str}" |
|
"Assistant:" |
|
) |
|
return prompt |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def chat_rag(user_input, history, temperature, top_p, min_new_tokens, max_new_tokens): |
|
""" |
|
Our RAG-based chat function. We'll: |
|
1) Add user input to FAISS |
|
2) Retrieve top-k relevant older messages from FAISS |
|
3) Build a prompt that includes the relevant chunks + user query |
|
4) Generate a response from the pipeline |
|
5) Add the assistant's response to FAISS as well |
|
""" |
|
pipe = ensure_pipeline() |
|
|
|
|
|
retriever.add_text(f"User: {user_input}") |
|
|
|
|
|
|
|
top_k = 3 |
|
results = retriever.search(user_input, top_k=top_k) |
|
|
|
|
|
prompt = build_rag_prompt(user_input, results) |
|
|
|
|
|
output = pipe( |
|
prompt, |
|
temperature=float(temperature), |
|
top_p=float(top_p), |
|
min_new_tokens=int(min_new_tokens), |
|
max_new_tokens=int(max_new_tokens), |
|
do_sample=True |
|
)[0]["generated_text"] |
|
|
|
|
|
|
|
if output.startswith(prompt): |
|
assistant_reply = output[len(prompt):].strip() |
|
else: |
|
assistant_reply = output.strip() |
|
|
|
|
|
retriever.add_text(f"Assistant: {assistant_reply}") |
|
|
|
|
|
history.append([user_input, assistant_reply]) |
|
return history, history |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo") |
|
|
|
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on Magpie subset (up to 5 min)") |
|
status_box = gr.Textbox(label="Finetune Status") |
|
|
|
finetune_btn.click(fn=finetune_small_subset, outputs=status_box) |
|
|
|
|
|
gr.Markdown("## Direct Generation (No Retrieval)") |
|
prompt_in = gr.Textbox(lines=3, label="Prompt") |
|
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature") |
|
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p") |
|
min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens") |
|
max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens") |
|
|
|
output_box = gr.Textbox(label="myr1 Output", lines=8) |
|
gen_btn = gr.Button("Generate with myr1") |
|
gen_btn.click( |
|
fn=predict, |
|
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens], |
|
outputs=output_box |
|
) |
|
|
|
|
|
gr.Markdown("## Compare myr1 vs DeepSeek") |
|
compare_btn = gr.Button("Compare") |
|
out_local = gr.Textbox(label="myr1 Output", lines=6) |
|
out_deepseek = gr.Textbox(label="DeepSeek Output", lines=6) |
|
compare_btn.click( |
|
fn=compare_models, |
|
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens], |
|
outputs=[out_local, out_deepseek] |
|
) |
|
|
|
|
|
gr.Markdown("## Chat with Retrieval-Augmented Memory") |
|
with gr.Row(): |
|
with gr.Column(): |
|
chatbot = gr.Chatbot(label="RAG Chat") |
|
chat_state = gr.State([]) |
|
|
|
user_input = gr.Textbox( |
|
show_label=False, |
|
placeholder="Ask a question...", |
|
lines=2 |
|
) |
|
send_btn = gr.Button("Send") |
|
|
|
|
|
user_input.submit( |
|
fn=chat_rag, |
|
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens], |
|
outputs=[chat_state, chatbot] |
|
) |
|
send_btn.click( |
|
fn=chat_rag, |
|
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens], |
|
outputs=[chat_state, chatbot] |
|
) |
|
|
|
demo.launch() |
|
|