File size: 3,661 Bytes
4275cae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import json

import torch
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import models.vqvae as vqvae
import options.option_vq as option_vq
import utils.utils_model as utils_model
from dataset import dataset_TM_eval
import utils.eval_trans as eval_trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
import numpy as np
##### ---- Exp dirs ---- #####
args = option_vq.get_args_parser()
torch.manual_seed(args.seed)

args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
os.makedirs(args.out_dir, exist_ok = True)

##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))


from utils.word_vectorizer import WordVectorizer
w_vectorizer = WordVectorizer('./glove', 'our_vab')


dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'

wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)


##### ---- Dataloader ---- #####
args.nb_joints = 21 if args.dataname == 'kit' else 22

val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer, unit_length=2**args.down_t)

##### ---- Network ---- #####
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
                       args.nb_code,
                       args.code_dim,
                       args.output_emb_width,
                       args.down_t,
                       args.stride_t,
                       args.width,
                       args.depth,
                       args.dilation_growth_rate,
                       args.vq_act,
                       args.vq_norm)

if args.resume_pth : 
    logger.info('loading checkpoint from {}'.format(args.resume_pth))
    ckpt = torch.load(args.resume_pth, map_location='cpu')
    net.load_state_dict(ckpt['net'], strict=True)
net.train()
net.cuda()

fid = []
div = []
top1 = []
top2 = []
top3 = []
matching = []
repeat_time = 20
for i in range(repeat_time):
    best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper, draw=False, save=False, savenpy=(i==0))
    fid.append(best_fid)
    div.append(best_div)
    top1.append(best_top1)
    top2.append(best_top2)
    top3.append(best_top3)
    matching.append(best_matching)
print('final result:')
print('fid: ', sum(fid)/repeat_time)
print('div: ', sum(div)/repeat_time)
print('top1: ', sum(top1)/repeat_time)
print('top2: ', sum(top2)/repeat_time)
print('top3: ', sum(top3)/repeat_time)
print('matching: ', sum(matching)/repeat_time)

fid = np.array(fid)
div = np.array(div)
top1 = np.array(top1)
top2 = np.array(top2)
top3 = np.array(top3)
matching = np.array(matching)
msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}"
logger.info(msg_final)