Spaces:
Runtime error
Runtime error
Jayabalambika
commited on
Commit
·
eafe433
1
Parent(s):
6d21cff
Update app.py
Browse files
app.py
CHANGED
@@ -155,16 +155,21 @@ def infer(prompt, negative_prompt, image, model_type="Standard"):
|
|
155 |
prompts = num_samples * [prompt]
|
156 |
if model_type=="Standard":
|
157 |
prompt_ids = std_pipeline.prepare_text_inputs(prompts)
|
158 |
-
|
159 |
prompt_ids = enc_pipeline.prepare_text_inputs(prompts)
|
|
|
|
|
160 |
prompt_ids = shard(prompt_ids)
|
161 |
|
162 |
if model_type=="Standard":
|
163 |
annotated_image = generate_annotation(image, overlap=False, hand_encoding=False)
|
164 |
overlap_image = generate_annotation(image, overlap=True, hand_encoding=False)
|
165 |
-
|
166 |
annotated_image = generate_annotation(image, overlap=False, hand_encoding=True)
|
167 |
overlap_image = generate_annotation(image, overlap=True, hand_encoding=True)
|
|
|
|
|
|
|
168 |
validation_image = Image.fromarray(annotated_image).convert("RGB")
|
169 |
|
170 |
if model_type=="Standard":
|
@@ -183,7 +188,7 @@ def infer(prompt, negative_prompt, image, model_type="Standard"):
|
|
183 |
neg_prompt_ids=negative_prompt_ids,
|
184 |
jit=True,
|
185 |
).images
|
186 |
-
|
187 |
processed_image = enc_pipeline.prepare_image_inputs(num_samples * [validation_image])
|
188 |
processed_image = shard(processed_image)
|
189 |
|
@@ -200,7 +205,8 @@ def infer(prompt, negative_prompt, image, model_type="Standard"):
|
|
200 |
jit=True,
|
201 |
).images
|
202 |
|
203 |
-
|
|
|
204 |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
205 |
|
206 |
results = [i for i in images]
|
|
|
155 |
prompts = num_samples * [prompt]
|
156 |
if model_type=="Standard":
|
157 |
prompt_ids = std_pipeline.prepare_text_inputs(prompts)
|
158 |
+
elif model_type=="Hand Encoding":
|
159 |
prompt_ids = enc_pipeline.prepare_text_inputs(prompts)
|
160 |
+
else:
|
161 |
+
pass
|
162 |
prompt_ids = shard(prompt_ids)
|
163 |
|
164 |
if model_type=="Standard":
|
165 |
annotated_image = generate_annotation(image, overlap=False, hand_encoding=False)
|
166 |
overlap_image = generate_annotation(image, overlap=True, hand_encoding=False)
|
167 |
+
elif model_type=="Hand Encoding":
|
168 |
annotated_image = generate_annotation(image, overlap=False, hand_encoding=True)
|
169 |
overlap_image = generate_annotation(image, overlap=True, hand_encoding=True)
|
170 |
+
|
171 |
+
else:
|
172 |
+
pass
|
173 |
validation_image = Image.fromarray(annotated_image).convert("RGB")
|
174 |
|
175 |
if model_type=="Standard":
|
|
|
188 |
neg_prompt_ids=negative_prompt_ids,
|
189 |
jit=True,
|
190 |
).images
|
191 |
+
elif model_type=="Hand Encoding":
|
192 |
processed_image = enc_pipeline.prepare_image_inputs(num_samples * [validation_image])
|
193 |
processed_image = shard(processed_image)
|
194 |
|
|
|
205 |
jit=True,
|
206 |
).images
|
207 |
|
208 |
+
else:
|
209 |
+
pass
|
210 |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
211 |
|
212 |
results = [i for i in images]
|