Spaces:
Runtime error
Runtime error
Update app.py
Browse filesadded with gr.row for radio and added conditionals depending on model selection
app.py
CHANGED
@@ -85,17 +85,27 @@ def generate_annotation(img, overlap=False, hand_encoding=False):
|
|
85 |
# STEP 5: Process the classification result. In this case, visualize it.
|
86 |
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result, overlap=overlap, hand_encoding=hand_encoding)
|
87 |
return annotated_image
|
88 |
-
|
89 |
-
model_type = gr.Radio(["Standard", "Hand Encoding"], label="Model preprocessing", info="We developed two models, one with standard mediapipe landmarks, and one with different (but similar) coloring on palm landmards to distinguish left and right")
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
101 |
args.controlnet_model_name_or_path,
|
@@ -128,7 +138,12 @@ def infer(prompt, negative_prompt, image):
|
|
128 |
prompt_ids = pipeline.prepare_text_inputs(prompts)
|
129 |
prompt_ids = shard(prompt_ids)
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
validation_image = Image.fromarray(annotated_image).convert("RGB")
|
133 |
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
|
134 |
processed_image = shard(processed_image)
|
@@ -150,7 +165,7 @@ def infer(prompt, negative_prompt, image):
|
|
150 |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
151 |
|
152 |
results = [i for i in images]
|
153 |
-
return [annotated_image] + results
|
154 |
|
155 |
|
156 |
with gr.Blocks(theme='gradio/soft') as demo:
|
|
|
85 |
# STEP 5: Process the classification result. In this case, visualize it.
|
86 |
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result, overlap=overlap, hand_encoding=hand_encoding)
|
87 |
return annotated_image
|
88 |
+
with gr.Row():
|
89 |
+
model_type = gr.Radio(["Standard", "Hand Encoding"], label="Model preprocessing", info="We developed two models, one with standard mediapipe landmarks, and one with different (but similar) coloring on palm landmards to distinguish left and right")
|
90 |
+
|
91 |
+
if model_type=="Standard":
|
92 |
+
args = Namespace(
|
93 |
+
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
|
94 |
+
revision="non-ema",
|
95 |
+
from_pt=True,
|
96 |
+
controlnet_model_name_or_path="Vincent-luo/controlnet-hands",
|
97 |
+
controlnet_revision=None,
|
98 |
+
controlnet_from_pt=False,
|
99 |
+
)
|
100 |
+
if model_type=="Hand Encoding":
|
101 |
+
args = Namespace(
|
102 |
+
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
|
103 |
+
revision="non-ema",
|
104 |
+
from_pt=True,
|
105 |
+
controlnet_model_name_or_path="MakiPan/controlnet-encoded-hands-130k",
|
106 |
+
controlnet_revision=None,
|
107 |
+
controlnet_from_pt=False,
|
108 |
+
)
|
109 |
|
110 |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
111 |
args.controlnet_model_name_or_path,
|
|
|
138 |
prompt_ids = pipeline.prepare_text_inputs(prompts)
|
139 |
prompt_ids = shard(prompt_ids)
|
140 |
|
141 |
+
if model_type=="Standard":
|
142 |
+
annotated_image = generate_annotation(image, overlap=False, hand_encoding=False)
|
143 |
+
overlap_image = generate_annotation(image, overlap=True, hand_encoding=False)
|
144 |
+
if model_type=="Hand Encoding":
|
145 |
+
annotated_image = generate_annotation(image, overlap=False, hand_encoding=True)
|
146 |
+
overlap_image = generate_annotation(image, overlap=True, hand_encoding=True)
|
147 |
validation_image = Image.fromarray(annotated_image).convert("RGB")
|
148 |
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
|
149 |
processed_image = shard(processed_image)
|
|
|
165 |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
166 |
|
167 |
results = [i for i in images]
|
168 |
+
return [annotated_image, overlap_image] + results
|
169 |
|
170 |
|
171 |
with gr.Blocks(theme='gradio/soft') as demo:
|