import os import copy import torch import gradio import gradio as gr from PIL import Image device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') os.system("wget https://www.dropbox.com/s/grcragozd4x79zc/model_best.pth?dl=0") model = torch.load("./Desktop/model_best.pth?dl=0", map_location=device) # img = Image.open(path).convert('RGB') from torchvision import transforms transforms2 = transforms.Compose([ transforms.Resize(256), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # img = transforms(img) # img = img.unsqueeze(0) model.eval() labels = ['Tomato_Late_blight', 'Tomato_healthy', 'Grape_healthy', 'Orange_Haunglongbing(Citrus_greening)', 'Soybeanhealthy', 'Squash_Powdery_mildew', 'Potato_healthy', 'Corn(maize)Northern_Leaf_Blight', 'Tomato_Early_blight', 'Tomato_Septoria_leaf_spot', 'Corn(maize)Cercospora_leaf_spot Gray_leaf_spot', 'Strawberry_Leaf_scorch', 'Peach_healthy', 'Apple_Apple_scab', 'Tomato_Tomato_Yellow_Leaf_Curl_Virus', 'Tomato_Bacterial_spot', 'Apple_Black_rot', 'Blueberry_healthy', 'Cherry(including_sour)Powdery_mildew', 'Peach_Bacterial_spot', 'Apple_Cedar_apple_rust', 'Tomato_Target_Spot', 'Pepper,_bell_healthy', 'Grape_Leaf_blight(Isariopsis_Leaf_Spot)', 'PotatoLate_blight', 'Tomato_Tomato_mosaic_virus', 'Strawberry_healthy', 'Apple_healthy', 'Grape_Black_rot', 'Potato_Early_blight', 'Cherry(including_sour)healthy', 'Corn(maize)Common_rust', 'GrapeEsca(Black_Measles)', 'Raspberryhealthy', 'Tomato_Leaf_Mold', 'Tomato_Spider_mites Two-spotted_spider_mite', 'Pepper,_bell_Bacterial_spot', 'Corn(maize)__healthy'] # with torch.no_grad(): # # preds = # preds = model(img) # score, indices = torch.max(preds, 1) def recognize_digit(image): image = transforms2(image) image = image.unsqueeze(0) # image = image.unsqueeze(0) # image = image.reshape(1, -1) # with torch.no_grad(): # preds = # img = image.reshape((-1, 3, 256, 256)) preds = model(image).flatten() # prediction = model.predict(image).tolist()[0] # score, indices = torch.max(preds, 1) # return {str(indices.item())} return {labels[i]: float(preds[i]) for i in range(38)} im = gradio.inputs.Image( shape=(256, 256), image_mode="RGB", type="pil") iface = gr.Interface( recognize_digit, im, gradio.outputs.Label(num_top_classes=3), live=True, interpretation="default", examples=[["images/cheetah1.jpg"], ["images/lion.jpg"]], capture_session=True, ) iface.test_launch() iface.launch()