Spaces:
Runtime error
Runtime error
import os | |
import copy | |
import torch | |
import gradio | |
import gradio as gr | |
from PIL import Image | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
os.system("wget https://www.dropbox.com/s/grcragozd4x79zc/model_best.pth?dl=0") | |
model = torch.load("./Desktop/model_best.pth?dl=0", map_location=device) | |
# img = Image.open(path).convert('RGB') | |
from torchvision import transforms | |
transforms2 = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
# img = transforms(img) | |
# img = img.unsqueeze(0) | |
model.eval() | |
labels = ['Tomato_Late_blight', 'Tomato_healthy', 'Grape_healthy', 'Orange_Haunglongbing(Citrus_greening)', 'Soybeanhealthy', 'Squash_Powdery_mildew', 'Potato_healthy', 'Corn(maize)Northern_Leaf_Blight', 'Tomato_Early_blight', 'Tomato_Septoria_leaf_spot', 'Corn(maize)Cercospora_leaf_spot Gray_leaf_spot', 'Strawberry_Leaf_scorch', 'Peach_healthy', 'Apple_Apple_scab', 'Tomato_Tomato_Yellow_Leaf_Curl_Virus', 'Tomato_Bacterial_spot', 'Apple_Black_rot', 'Blueberry_healthy', 'Cherry(including_sour)Powdery_mildew', 'Peach_Bacterial_spot', 'Apple_Cedar_apple_rust', 'Tomato_Target_Spot', 'Pepper,_bell_healthy', 'Grape_Leaf_blight(Isariopsis_Leaf_Spot)', 'PotatoLate_blight', 'Tomato_Tomato_mosaic_virus', 'Strawberry_healthy', 'Apple_healthy', 'Grape_Black_rot', 'Potato_Early_blight', 'Cherry(including_sour)healthy', 'Corn(maize)Common_rust', 'GrapeEsca(Black_Measles)', 'Raspberryhealthy', 'Tomato_Leaf_Mold', 'Tomato_Spider_mites Two-spotted_spider_mite', 'Pepper,_bell_Bacterial_spot', 'Corn(maize)__healthy'] | |
# with torch.no_grad(): | |
# # preds = | |
# preds = model(img) | |
# score, indices = torch.max(preds, 1) | |
def recognize_digit(image): | |
image = transforms2(image) | |
image = image.unsqueeze(0) | |
# image = image.unsqueeze(0) | |
# image = image.reshape(1, -1) | |
# with torch.no_grad(): | |
# preds = | |
# img = image.reshape((-1, 3, 256, 256)) | |
preds = model(image).flatten() | |
# prediction = model.predict(image).tolist()[0] | |
# score, indices = torch.max(preds, 1) | |
# return {str(indices.item())} | |
return {labels[i]: float(preds[i]) for i in range(38)} | |
im = gradio.inputs.Image( | |
shape=(256, 256), image_mode="RGB", type="pil") | |
iface = gr.Interface( | |
recognize_digit, | |
im, | |
gradio.outputs.Label(num_top_classes=3), | |
live=True, | |
interpretation="default", | |
examples=[["images/cheetah1.jpg"], ["images/lion.jpg"]], | |
capture_session=True, | |
) | |
iface.test_launch() | |
iface.launch() |