Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Minseok Bae
commited on
Commit
·
d7b7dc6
1
Parent(s):
767187a
Modified for hallucination evaluation task
Browse files- scripts/create_request_file.py +3 -2
- src/backend/evaluate_model.py +37 -0
- src/backend/manage_requests.py +122 -0
- src/backend/model_operations.py +96 -0
- src/backend/run_eval_suite.py +49 -0
- src/backend/sort_queue.py +28 -0
- src/backend/util.py +32 -0
- src/datasets/leaderboard_dataset.csv +0 -0
- src/display/about.py +12 -12
- src/display/utils.py +11 -6
- src/envs.py +6 -3
- src/leaderboard/read_evals.py +21 -17
- src/populate.py +1 -1
- src/submission/submit.py +1 -0
scripts/create_request_file.py
CHANGED
@@ -7,9 +7,10 @@ from datetime import datetime, timezone
|
|
7 |
import click
|
8 |
from colorama import Fore
|
9 |
from huggingface_hub import HfApi, snapshot_download
|
|
|
10 |
|
11 |
-
EVAL_REQUESTS_PATH = "eval-queue"
|
12 |
-
QUEUE_REPO = "open-llm-leaderboard/requests"
|
13 |
|
14 |
precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
|
15 |
model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
|
|
|
7 |
import click
|
8 |
from colorama import Fore
|
9 |
from huggingface_hub import HfApi, snapshot_download
|
10 |
+
from util import QUEUE_REPO, EVAL_REQUESTS_PATH
|
11 |
|
12 |
+
# EVAL_REQUESTS_PATH = "eval-queue"
|
13 |
+
# QUEUE_REPO = "open-llm-leaderboard/requests"
|
14 |
|
15 |
precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
|
16 |
model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
|
src/backend/evaluate_model.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
from leaderboard.src.backend.model_operations import SummaryGenerator, EvaluationModel
|
4 |
+
from envs import HEM_PATH, SOURCE_PATH
|
5 |
+
from leaderboard.src.backend.util import load_dataframe, format_results
|
6 |
+
|
7 |
+
class Evaluator:
|
8 |
+
def __init__(self, model, revision, precision, num_fewshot, batch_size, device, no_cache, limit, write_out=True, output_base_path='logs'):
|
9 |
+
self.model = model
|
10 |
+
self.revision = revision
|
11 |
+
self.precision = precision
|
12 |
+
self.num_fewshot = num_fewshot
|
13 |
+
self.batch_size = batch_size
|
14 |
+
self.device = device
|
15 |
+
self.no_cache = no_cache
|
16 |
+
self.limit = limit
|
17 |
+
self.write_out = write_out
|
18 |
+
self.output_base_path = output_base_path
|
19 |
+
self.summary_generator = SummaryGenerator(model, revision)
|
20 |
+
self.eval_model = EvaluationModel(HEM_PATH)
|
21 |
+
|
22 |
+
def evaluate(self):
|
23 |
+
df = load_dataframe(SOURCE_PATH)
|
24 |
+
generated_summaries_df = self.summary_generator.generate_summaries(df)
|
25 |
+
|
26 |
+
avg_summary_len = self.summary_generator.avg_length
|
27 |
+
answer_rate = self.summary_generator.answer_rate
|
28 |
+
|
29 |
+
hallucination_scores = self.eval_model.evaluate_hallucination(generated_summaries_df)
|
30 |
+
|
31 |
+
accuracy = self.eval_model.compute_accuracy
|
32 |
+
hallucination_rate = self.eval_model.hallucination_rate
|
33 |
+
|
34 |
+
results = format_results(hallucination_scores, self.model, self.revision, self.precision, accuracy, hallucination_rate, answer_rate, avg_summary_len)
|
35 |
+
|
36 |
+
return results
|
37 |
+
|
src/backend/manage_requests.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
from huggingface_hub import HfApi, snapshot_download
|
7 |
+
from src.envs import TOKEN
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class EvalRequest:
|
11 |
+
model: str
|
12 |
+
private: bool
|
13 |
+
status: str
|
14 |
+
json_filepath: str
|
15 |
+
weight_type: str = "Original"
|
16 |
+
model_type: str = "" # pretrained, finetuned, with RL
|
17 |
+
precision: str = "" # float16, bfloat16
|
18 |
+
base_model: Optional[str] = None # for adapter models
|
19 |
+
revision: str = "main" # commit
|
20 |
+
submitted_time: Optional[str] = "2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date
|
21 |
+
model_type: Optional[str] = None
|
22 |
+
likes: Optional[int] = 0
|
23 |
+
params: Optional[int] = None
|
24 |
+
license: Optional[str] = ""
|
25 |
+
|
26 |
+
def get_model_args(self):
|
27 |
+
model_args = f"pretrained={self.model},revision={self.revision}"
|
28 |
+
|
29 |
+
if self.precision in ["float16", "bfloat16"]:
|
30 |
+
model_args += f",dtype={self.precision}"
|
31 |
+
# Quantized models need some added config, the install of bits and bytes, etc
|
32 |
+
#elif self.precision == "8bit":
|
33 |
+
# model_args += ",load_in_8bit=True"
|
34 |
+
#elif self.precision == "4bit":
|
35 |
+
# model_args += ",load_in_4bit=True"
|
36 |
+
#elif self.precision == "GPTQ":
|
37 |
+
# A GPTQ model does not need dtype to be specified,
|
38 |
+
# it will be inferred from the config
|
39 |
+
pass
|
40 |
+
else:
|
41 |
+
raise Exception(f"Unknown precision {self.precision}.")
|
42 |
+
|
43 |
+
return model_args
|
44 |
+
|
45 |
+
|
46 |
+
def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str):
|
47 |
+
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)"""
|
48 |
+
json_filepath = eval_request.json_filepath
|
49 |
+
|
50 |
+
with open(json_filepath) as fp:
|
51 |
+
data = json.load(fp)
|
52 |
+
|
53 |
+
data["status"] = set_to_status
|
54 |
+
|
55 |
+
with open(json_filepath, "w") as f:
|
56 |
+
f.write(json.dumps(data))
|
57 |
+
|
58 |
+
api.upload_file(
|
59 |
+
path_or_fileobj=json_filepath,
|
60 |
+
path_in_repo=json_filepath.replace(local_dir, ""),
|
61 |
+
repo_id=hf_repo,
|
62 |
+
repo_type="dataset",
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
def get_eval_requests(job_status: list, local_dir: str, hf_repo: str) -> list[EvalRequest]:
|
67 |
+
"""Get all pending evaluation requests and return a list in which private
|
68 |
+
models appearing first, followed by public models sorted by the number of
|
69 |
+
likes.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
`list[EvalRequest]`: a list of model info dicts.
|
73 |
+
"""
|
74 |
+
snapshot_download(repo_id=hf_repo, revision="main", local_dir=local_dir, repo_type="dataset", max_workers=60)
|
75 |
+
json_files = glob.glob(f"{local_dir}/**/*.json", recursive=True)
|
76 |
+
|
77 |
+
eval_requests = []
|
78 |
+
for json_filepath in json_files:
|
79 |
+
with open(json_filepath) as fp:
|
80 |
+
data = json.load(fp)
|
81 |
+
if data["status"] in job_status:
|
82 |
+
data["json_filepath"] = json_filepath
|
83 |
+
eval_request = EvalRequest(**data)
|
84 |
+
eval_requests.append(eval_request)
|
85 |
+
|
86 |
+
return eval_requests
|
87 |
+
|
88 |
+
|
89 |
+
def check_completed_evals(
|
90 |
+
api: HfApi,
|
91 |
+
hf_repo: str,
|
92 |
+
local_dir: str,
|
93 |
+
checked_status: str,
|
94 |
+
completed_status: str,
|
95 |
+
failed_status: str,
|
96 |
+
hf_repo_results: str,
|
97 |
+
local_dir_results: str,
|
98 |
+
):
|
99 |
+
"""Checks if the currently running evals are completed, if yes, update their status on the hub."""
|
100 |
+
snapshot_download(repo_id=hf_repo_results, revision="main", local_dir=local_dir_results, repo_type="dataset", max_workers=60)
|
101 |
+
|
102 |
+
running_evals = get_eval_requests(checked_status, hf_repo=hf_repo, local_dir=local_dir)
|
103 |
+
|
104 |
+
for eval_request in running_evals:
|
105 |
+
model = eval_request.model
|
106 |
+
print("====================================")
|
107 |
+
print(f"Checking {model}")
|
108 |
+
|
109 |
+
output_path = model
|
110 |
+
output_file = f"{local_dir_results}/{output_path}/results*.json"
|
111 |
+
output_file_exists = len(glob.glob(output_file)) > 0
|
112 |
+
|
113 |
+
if output_file_exists:
|
114 |
+
print(
|
115 |
+
f"EXISTS output file exists for {model} setting it to {completed_status}"
|
116 |
+
)
|
117 |
+
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
|
118 |
+
else:
|
119 |
+
print(
|
120 |
+
f"No result file found for {model} setting it to {failed_status}"
|
121 |
+
)
|
122 |
+
set_eval_request(api, eval_request, failed_status, hf_repo, local_dir)
|
src/backend/model_operations.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from sentence_transformers import CrossEncoder
|
5 |
+
|
6 |
+
from leaderboard.src.backend.util import generate_prompt
|
7 |
+
|
8 |
+
def load_evaluation_model(model_path):
|
9 |
+
model = CrossEncoder(model_path)
|
10 |
+
model.save_pretrained('.checkpoints/{model_path}')
|
11 |
+
return model
|
12 |
+
|
13 |
+
class SummaryGenerator:
|
14 |
+
def __init__(self, model_id, revision):
|
15 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, revision)
|
16 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_id, revision)
|
17 |
+
self.summaries_df = pd.DataFrame()
|
18 |
+
self.revision = revision
|
19 |
+
self.avg_length = None
|
20 |
+
self.answer_rate = None
|
21 |
+
|
22 |
+
def generate_summaries(self, df):
|
23 |
+
source, summary, dataset = [], [], []
|
24 |
+
|
25 |
+
for index, row in df.iterrows():
|
26 |
+
_source = row['text']
|
27 |
+
_dataset = row['dataset']
|
28 |
+
|
29 |
+
prompt = generate_prompt(_source)
|
30 |
+
inputs = self.tokenizer(prompt, return_tensors='pt', max_length=1024, revision=self.revision)
|
31 |
+
try:
|
32 |
+
outputs = self.model.generate(**inputs, max_new_tokens=1024, do_sample=False, temperature=0.0, revision=self.revision)
|
33 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True, revision=self.revision)
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error at index {index}: {e}")
|
36 |
+
response = ""
|
37 |
+
|
38 |
+
summary.append(response)
|
39 |
+
source.append(_source)
|
40 |
+
dataset.append(_dataset)
|
41 |
+
|
42 |
+
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)), columns=["source", "summary", "dataset"])
|
43 |
+
self._compute_avg_length()
|
44 |
+
self._compute_answer_rate()
|
45 |
+
|
46 |
+
return self.summaries_df
|
47 |
+
|
48 |
+
def _compute_avg_length(self):
|
49 |
+
total_words = 0
|
50 |
+
count = 0
|
51 |
+
|
52 |
+
for summary in self.summaries_df['summary']:
|
53 |
+
if summary != "":
|
54 |
+
words = summary.split()
|
55 |
+
total_words += len(words)
|
56 |
+
count += 1
|
57 |
+
|
58 |
+
self.avg_length = 0 if count == 0 else total_words / count
|
59 |
+
|
60 |
+
def _compute_answer_rate(self):
|
61 |
+
non_empty_count = sum(1 for summary in self.summaries_df['summary'] if summary != "")
|
62 |
+
total_rows = len(self.summaries_df)
|
63 |
+
|
64 |
+
self.answer_rate = 0 if total_rows == 0 else non_empty_count / total_rows
|
65 |
+
|
66 |
+
class EvaluationModel:
|
67 |
+
def __init__(self, model_path):
|
68 |
+
self.model = load_evaluation_model(model_path)
|
69 |
+
self.scores = []
|
70 |
+
self.accuracy = None
|
71 |
+
self.hallucination_rate = None
|
72 |
+
|
73 |
+
def evaluate_hallucination(self, summaries_df):
|
74 |
+
# Convert to NumPy arrays for efficient processing
|
75 |
+
source_docs = np.array(summaries_df['source'])
|
76 |
+
generated_summaries = np.array(summaries_df['summary'])
|
77 |
+
|
78 |
+
scores = self.model.predict(source_docs, generated_summaries)
|
79 |
+
self.scores = scores
|
80 |
+
return self.scores
|
81 |
+
|
82 |
+
def compute_accuracy(self):
|
83 |
+
if not self.scores:
|
84 |
+
raise ValueError("Scores not calculated. Call evaluate_hallucination() first.")
|
85 |
+
|
86 |
+
# Use threshold of 0.5 to compute accuracy
|
87 |
+
num_above_threshold = sum(score >= 0.5 for score in self.scores)
|
88 |
+
num_total = len(self.scores)
|
89 |
+
|
90 |
+
if num_total == 0:
|
91 |
+
raise ValueError("No scores available to compute accuracy.")
|
92 |
+
|
93 |
+
self.accuracy = (num_above_threshold / num_total) * 100
|
94 |
+
self.hallucination_rate = 100 - self.accuracy
|
95 |
+
|
96 |
+
return self.accuracy
|
src/backend/run_eval_suite.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
# from lm_eval import tasks, evaluator, utils
|
7 |
+
from evaluate_model import Evaluator
|
8 |
+
|
9 |
+
from src.envs import RESULTS_REPO, API
|
10 |
+
from src.backend.manage_requests import EvalRequest
|
11 |
+
|
12 |
+
from util import load_dataframe, format_results
|
13 |
+
|
14 |
+
logging.getLogger("openai").setLevel(logging.WARNING)
|
15 |
+
|
16 |
+
def run_evaluation(eval_request: EvalRequest, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
|
17 |
+
if limit:
|
18 |
+
print(
|
19 |
+
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
|
20 |
+
)
|
21 |
+
|
22 |
+
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
|
23 |
+
|
24 |
+
# print(f"Selected Tasks: {task_names}")
|
25 |
+
evaluator = Evaluator(eval_request.model, eval_request.revision, eval_request.precision, num_fewshot, batch_size, device, no_cache, limit, write_out=True, output_base_path='logs')
|
26 |
+
results = evaluator.evaluate()
|
27 |
+
|
28 |
+
# results["config"]["model_dtype"] = eval_request.precision
|
29 |
+
# results["config"]["model_name"] = eval_request.model
|
30 |
+
# results["config"]["model_sha"] = eval_request.revision
|
31 |
+
|
32 |
+
dumped = json.dumps(results, indent=2)
|
33 |
+
print(dumped)
|
34 |
+
|
35 |
+
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
|
36 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
37 |
+
with open(output_path, "w") as f:
|
38 |
+
f.write(dumped)
|
39 |
+
|
40 |
+
print(evaluator.make_table(results))
|
41 |
+
|
42 |
+
API.upload_file(
|
43 |
+
path_or_fileobj=output_path,
|
44 |
+
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
|
45 |
+
repo_id=results_repo,
|
46 |
+
repo_type="dataset",
|
47 |
+
)
|
48 |
+
|
49 |
+
return results
|
src/backend/sort_queue.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
from huggingface_hub import HfApi
|
5 |
+
|
6 |
+
from src.backend.manage_requests import EvalRequest
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class ModelMetadata:
|
11 |
+
likes: int = 0
|
12 |
+
size: int = 15
|
13 |
+
|
14 |
+
|
15 |
+
def sort_models_by_priority(api: HfApi, models: list[EvalRequest]) -> list[EvalRequest]:
|
16 |
+
private_models = [model for model in models if model.private]
|
17 |
+
public_models = [model for model in models if not model.private]
|
18 |
+
|
19 |
+
return sort_by_submit_date(private_models) + sort_by_submit_date(public_models)
|
20 |
+
|
21 |
+
def sort_by_submit_date(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
|
22 |
+
return sorted(eval_requests, key=lambda x: x.submitted_time, reverse=False)
|
23 |
+
|
24 |
+
def sort_by_size(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
|
25 |
+
return sorted(eval_requests, key=lambda x: x.params, reverse=False)
|
26 |
+
|
27 |
+
def sort_by_likes(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
|
28 |
+
return sorted(eval_requests, key=lambda x: x.likes, reverse=False)
|
src/backend/util.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
def load_dataframe(data_path):
|
4 |
+
df = pd.read_csv(data_path)
|
5 |
+
return df
|
6 |
+
|
7 |
+
def generate_prompt(source_passage):
|
8 |
+
return f"""You are a chat bot answering questions using data. You must stick to the answers provided solely by the text in the passage provided.
|
9 |
+
You are asked the question 'Provide a concise summary of the following passage, covering the core pieces of information described.'
|
10 |
+
Passage:
|
11 |
+
{source_passage}
|
12 |
+
"""
|
13 |
+
|
14 |
+
def format_results(hallucination_scores, model_name, revision, precision, accuracy, hallucination_rate, answer_rate, avg_summary_len):
|
15 |
+
# Define the structure of the results (JSON)
|
16 |
+
results = {
|
17 |
+
"config": {
|
18 |
+
"model_dtype": precision, # Precision with which you ran the evaluation
|
19 |
+
"model_name": model_name, # Name of the model
|
20 |
+
"model_sha": revision # Hash of the model
|
21 |
+
},
|
22 |
+
"results": {
|
23 |
+
"hallucination_eval": {
|
24 |
+
"HEM Scores": hallucination_scores,
|
25 |
+
"Accuracy": accuracy,
|
26 |
+
"Hallucination Rate": hallucination_rate,
|
27 |
+
"Answer Rate": answer_rate,
|
28 |
+
"Average Summary Length": avg_summary_len,
|
29 |
+
}
|
30 |
+
}
|
31 |
+
}
|
32 |
+
return results
|
src/datasets/leaderboard_dataset.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/display/about.py
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
-
@dataclass
|
5 |
-
class Task:
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# Init: to update with your specific keys
|
12 |
-
class Tasks(Enum):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
|
18 |
# Your leaderboard name
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
+
# @dataclass
|
5 |
+
# class Task:
|
6 |
+
# benchmark: str
|
7 |
+
# metric: str
|
8 |
+
# col_name: str
|
9 |
+
|
10 |
+
|
11 |
+
# # Init: to update with your specific keys
|
12 |
+
# class Tasks(Enum):
|
13 |
+
# # task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
14 |
+
# task0 = Task("task_name1", "metric_name", "First task")
|
15 |
+
# task1 = Task("task_name2", "metric_name", "Second task")
|
16 |
|
17 |
|
18 |
# Your leaderboard name
|
src/display/utils.py
CHANGED
@@ -3,7 +3,7 @@ from enum import Enum
|
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
-
from src.display.about import Tasks
|
7 |
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
@@ -26,10 +26,15 @@ auto_eval_column_dict = []
|
|
26 |
# Init
|
27 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
28 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
29 |
-
#
|
30 |
-
auto_eval_column_dict.append(["
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
# Model information
|
34 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
35 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
@@ -121,7 +126,7 @@ TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default a
|
|
121 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
122 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
123 |
|
124 |
-
BENCHMARK_COLS = [
|
125 |
|
126 |
NUMERIC_INTERVALS = {
|
127 |
"?": pd.Interval(-1, 0, closed="right"),
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
+
# from src.display.about import Tasks
|
7 |
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
|
|
26 |
# Init
|
27 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
28 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
29 |
+
# Accuracy
|
30 |
+
auto_eval_column_dict.append(["accuracy", ColumnContent, ColumnContent("Accuracy ⬆️", "number", True)])
|
31 |
+
# Hallucination Rate
|
32 |
+
auto_eval_column_dict.append(["hallucination_rate", ColumnContent, ColumnContent("Hallucination Rate ⬇️", "number", True)])
|
33 |
+
# Answer Rate
|
34 |
+
auto_eval_column_dict.append(["answer_rate", ColumnContent, ColumnContent("Answer Rate ⬆️", "number", True)])
|
35 |
+
# Average Summary Length
|
36 |
+
auto_eval_column_dict.append(["average_summary_length", ColumnContent, ColumnContent("Average Summary Length", "number", True)])
|
37 |
+
|
38 |
# Model information
|
39 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
40 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
|
|
126 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
127 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
128 |
|
129 |
+
BENCHMARK_COLS = ["Accuracy", "Hallucination Rate", "Answer Rate", "Average Summary Length"]
|
130 |
|
131 |
NUMERIC_INTERVALS = {
|
132 |
"?": pd.Interval(-1, 0, closed="right"),
|
src/envs.py
CHANGED
@@ -2,10 +2,10 @@ import os
|
|
2 |
|
3 |
from huggingface_hub import HfApi
|
4 |
|
5 |
-
#
|
6 |
-
TOKEN = os.environ.get("
|
7 |
|
8 |
-
OWNER = "
|
9 |
REPO_ID = f"{OWNER}/leaderboard"
|
10 |
QUEUE_REPO = f"{OWNER}/requests"
|
11 |
RESULTS_REPO = f"{OWNER}/results"
|
@@ -17,3 +17,6 @@ EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
|
17 |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
18 |
|
19 |
API = HfApi(token=TOKEN)
|
|
|
|
|
|
|
|
2 |
|
3 |
from huggingface_hub import HfApi
|
4 |
|
5 |
+
# replace this with our token
|
6 |
+
TOKEN = os.environ.get("HF_TOKEN", None)
|
7 |
|
8 |
+
OWNER = "vectara"
|
9 |
REPO_ID = f"{OWNER}/leaderboard"
|
10 |
QUEUE_REPO = f"{OWNER}/requests"
|
11 |
RESULTS_REPO = f"{OWNER}/results"
|
|
|
17 |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
18 |
|
19 |
API = HfApi(token=TOKEN)
|
20 |
+
|
21 |
+
SOURCE_PATH = "/datasets/leaderboard_summaries.csv"
|
22 |
+
HEM_PATH = 'vectara/hallucination_evaluation_model'
|
src/leaderboard/read_evals.py
CHANGED
@@ -8,7 +8,7 @@ import dateutil
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType,
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
@@ -65,17 +65,16 @@ class EvalResult:
|
|
65 |
architecture = ";".join(architectures)
|
66 |
|
67 |
# Extract results available in this file (some results are split in several files)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
results[task.benchmark] = mean_acc
|
79 |
|
80 |
return self(
|
81 |
eval_name=result_key,
|
@@ -107,7 +106,9 @@ class EvalResult:
|
|
107 |
|
108 |
def to_dict(self):
|
109 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
110 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
|
|
|
|
111 |
data_dict = {
|
112 |
"eval_name": self.eval_name, # not a column, just a save name,
|
113 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
@@ -118,15 +119,18 @@ class EvalResult:
|
|
118 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
119 |
AutoEvalColumn.dummy.name: self.full_model,
|
120 |
AutoEvalColumn.revision.name: self.revision,
|
121 |
-
AutoEvalColumn.average.name: average,
|
|
|
122 |
AutoEvalColumn.license.name: self.license,
|
123 |
AutoEvalColumn.likes.name: self.likes,
|
124 |
AutoEvalColumn.params.name: self.num_params,
|
125 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
126 |
}
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
|
131 |
return data_dict
|
132 |
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Precision, WeightType
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
|
|
65 |
architecture = ";".join(architectures)
|
66 |
|
67 |
# Extract results available in this file (some results are split in several files)
|
68 |
+
hallucination_eval = data["results"].get("hallucination_eval", {})
|
69 |
+
|
70 |
+
# Extract metrics from hallucination eval
|
71 |
+
results = {
|
72 |
+
"HEM Scores": hallucination_eval.get("HEM Scores", None),
|
73 |
+
"Accuracy": hallucination_eval.get("Accuracy", None),
|
74 |
+
"Hallucination Rate": hallucination_eval.get("Hallucination Rate", None),
|
75 |
+
"Answer Rate": hallucination_eval.get("Answer Rate", None),
|
76 |
+
"Average Summary Length": hallucination_eval.get("Average Summary Length", None),
|
77 |
+
}
|
|
|
78 |
|
79 |
return self(
|
80 |
eval_name=result_key,
|
|
|
106 |
|
107 |
def to_dict(self):
|
108 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
109 |
+
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
110 |
+
accuracy = self.results.get("Accuracy", None)
|
111 |
+
|
112 |
data_dict = {
|
113 |
"eval_name": self.eval_name, # not a column, just a save name,
|
114 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
|
|
119 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
120 |
AutoEvalColumn.dummy.name: self.full_model,
|
121 |
AutoEvalColumn.revision.name: self.revision,
|
122 |
+
# AutoEvalColumn.average.name: average,
|
123 |
+
AutoEvalColumn.accuracy.name: accuracy,
|
124 |
AutoEvalColumn.license.name: self.license,
|
125 |
AutoEvalColumn.likes.name: self.likes,
|
126 |
AutoEvalColumn.params.name: self.num_params,
|
127 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
128 |
}
|
129 |
+
# for task in Tasks:
|
130 |
+
# data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
131 |
+
data_dict["Hallucination Rate"] = self.results.get("Hallucination Rate", None)
|
132 |
+
data_dict["Answer Rate"] = self.results.get("Answer Rate", None)
|
133 |
+
data_dict["Average Summary Length"] = self.results.get("Average Summary Length", None)
|
134 |
|
135 |
return data_dict
|
136 |
|
src/populate.py
CHANGED
@@ -13,7 +13,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
13 |
all_data_json = [v.to_dict() for v in raw_data]
|
14 |
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
-
df = df.sort_values(by=[AutoEvalColumn.
|
17 |
df = df[cols].round(decimals=2)
|
18 |
|
19 |
# filter out if any of the benchmarks have not been produced
|
|
|
13 |
all_data_json = [v.to_dict() for v in raw_data]
|
14 |
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
+
df = df.sort_values(by=[AutoEvalColumn.accuracy.name], ascending=False)
|
17 |
df = df[cols].round(decimals=2)
|
18 |
|
19 |
# filter out if any of the benchmarks have not been produced
|
src/submission/submit.py
CHANGED
@@ -94,6 +94,7 @@ def add_new_eval(
|
|
94 |
return styled_warning("This model has been already submitted.")
|
95 |
|
96 |
print("Creating eval file")
|
|
|
97 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
98 |
os.makedirs(OUT_DIR, exist_ok=True)
|
99 |
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
|
|
94 |
return styled_warning("This model has been already submitted.")
|
95 |
|
96 |
print("Creating eval file")
|
97 |
+
|
98 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|