Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Miaoran000
commited on
Commit
·
7ef82ad
1
Parent(s):
dcf13df
update backend
Browse files- src/backend/model_operations.py +52 -11
- src/backend/run_eval_suite.py +5 -3
src/backend/model_operations.py
CHANGED
@@ -23,11 +23,14 @@ import anthropic
|
|
23 |
import replicate
|
24 |
# pip install -U google-generativeai
|
25 |
import google.generativeai as genai
|
|
|
|
|
|
|
26 |
|
27 |
import src.backend.util as util
|
28 |
import src.envs as envs
|
29 |
|
30 |
-
litellm.set_verbose=
|
31 |
|
32 |
# Set up basic configuration for logging
|
33 |
logging.basicConfig(level=logging.INFO,
|
@@ -171,9 +174,11 @@ class SummaryGenerator:
|
|
171 |
def generate_summary(self, system_prompt: str, user_prompt: str):
|
172 |
# Using Together AI API
|
173 |
using_together_api = False
|
174 |
-
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3-', 'qwen'] #, 'mistralai'
|
175 |
using_replicate_api = False
|
176 |
replicate_api_models = ['snowflake', 'llama-3.1-405b']
|
|
|
|
|
177 |
|
178 |
for replicate_api_model in replicate_api_models:
|
179 |
if replicate_api_model in self.model_id.lower():
|
@@ -186,7 +191,12 @@ class SummaryGenerator:
|
|
186 |
using_together_api = True
|
187 |
break
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
190 |
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
|
191 |
if using_together_api:
|
192 |
# print('using together api')
|
@@ -221,10 +231,11 @@ class SummaryGenerator:
|
|
221 |
result = result["text"]
|
222 |
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
|
223 |
result = result_candidates[0]
|
224 |
-
print(result)
|
225 |
except:
|
226 |
-
print(response)
|
227 |
result = ''
|
|
|
228 |
return result
|
229 |
|
230 |
# Using OpenAI API
|
@@ -334,6 +345,24 @@ class SummaryGenerator:
|
|
334 |
print(result)
|
335 |
return result
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
# Using HF API or download checkpoints
|
338 |
elif self.local_model is None and self.local_pipeline is None:
|
339 |
try: # try use HuggingFace API
|
@@ -347,23 +376,24 @@ class SummaryGenerator:
|
|
347 |
api_base=self.api_base,
|
348 |
)
|
349 |
result = response['choices'][0]['message']['content']
|
|
|
350 |
print(result)
|
351 |
return result
|
352 |
except Exception as e:
|
353 |
-
if 'Rate limit reached' in str(e):
|
354 |
wait_time = 300
|
355 |
current_time = datetime.now().strftime('%H:%M:%S')
|
356 |
print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
|
357 |
time.sleep(wait_time)
|
358 |
else:
|
359 |
-
|
360 |
self.local_pipeline = pipeline(
|
361 |
"text-generation",
|
362 |
model=self.model_id,
|
363 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
364 |
device_map="auto",
|
365 |
)
|
366 |
-
|
367 |
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf" if 'openelm' in self.model_id.lower() else self.model_id, trust_remote_code=True)
|
368 |
print("Tokenizer loaded")
|
369 |
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
|
@@ -372,6 +402,7 @@ class SummaryGenerator:
|
|
372 |
|
373 |
# Using local model/pipeline
|
374 |
if self.local_pipeline:
|
|
|
375 |
messages=[
|
376 |
{"role": "system", "content": system_prompt},
|
377 |
{"role": "user", "content": user_prompt}
|
@@ -385,6 +416,7 @@ class SummaryGenerator:
|
|
385 |
return result
|
386 |
|
387 |
elif self.local_model: # cannot call API. using local model / pipeline
|
|
|
388 |
if 'gemma' in self.model_id.lower() or 'mistral-7b' in self.model_id.lower():
|
389 |
messages=[
|
390 |
# gemma-1.1, mistral-7b does not accept system role
|
@@ -395,20 +427,29 @@ class SummaryGenerator:
|
|
395 |
elif 'phi-2' in self.model_id.lower():
|
396 |
prompt = system_prompt + '\n' + user_prompt
|
397 |
|
|
|
|
|
|
|
398 |
else:
|
399 |
messages=[
|
400 |
{"role": "system", "content": system_prompt},
|
401 |
{"role": "user", "content": user_prompt}
|
402 |
]
|
403 |
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
|
404 |
-
print(prompt)
|
405 |
-
print('-'*50)
|
406 |
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
|
407 |
with torch.no_grad():
|
408 |
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
|
|
|
|
|
409 |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
410 |
if 'gemma-2' in self.model_id.lower():
|
411 |
result = result.split(user_prompt + '\nmodel')[-1].strip()
|
|
|
|
|
|
|
|
|
412 |
else:
|
413 |
result = result.replace(prompt.strip(), '')
|
414 |
|
@@ -486,7 +527,7 @@ class EvaluationModel:
|
|
486 |
try:
|
487 |
# summary_pieces = summary.split('\n')
|
488 |
# summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1]
|
489 |
-
summary = summary.replace('<bos>','').replace('<eos>','')
|
490 |
score = self.model.predict([doc, summary])# [0]
|
491 |
if not isinstance(score, float):
|
492 |
try:
|
|
|
23 |
import replicate
|
24 |
# pip install -U google-generativeai
|
25 |
import google.generativeai as genai
|
26 |
+
from mistralai.client import MistralClient
|
27 |
+
from mistralai.models.chat_completion import ChatMessage
|
28 |
+
|
29 |
|
30 |
import src.backend.util as util
|
31 |
import src.envs as envs
|
32 |
|
33 |
+
litellm.set_verbose=True
|
34 |
|
35 |
# Set up basic configuration for logging
|
36 |
logging.basicConfig(level=logging.INFO,
|
|
|
174 |
def generate_summary(self, system_prompt: str, user_prompt: str):
|
175 |
# Using Together AI API
|
176 |
using_together_api = False
|
177 |
+
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3-', 'qwen', 'zero-one-ai'] #, 'mistralai'
|
178 |
using_replicate_api = False
|
179 |
replicate_api_models = ['snowflake', 'llama-3.1-405b']
|
180 |
+
using_pipeline = False
|
181 |
+
pipeline_models = ['llama-3.1', 'phi-3-mini','falcon-7b']
|
182 |
|
183 |
for replicate_api_model in replicate_api_models:
|
184 |
if replicate_api_model in self.model_id.lower():
|
|
|
191 |
using_together_api = True
|
192 |
break
|
193 |
|
194 |
+
if not using_replicate_api and not using_together_api:
|
195 |
+
for pipeline_model in pipeline_models:
|
196 |
+
if pipeline_model in self.model_id.lower():
|
197 |
+
using_pipeline = True
|
198 |
+
break
|
199 |
+
|
200 |
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
|
201 |
if using_together_api:
|
202 |
# print('using together api')
|
|
|
231 |
result = result["text"]
|
232 |
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
|
233 |
result = result_candidates[0]
|
234 |
+
# print(result)
|
235 |
except:
|
236 |
+
# print(response)
|
237 |
result = ''
|
238 |
+
print(result)
|
239 |
return result
|
240 |
|
241 |
# Using OpenAI API
|
|
|
345 |
print(result)
|
346 |
return result
|
347 |
|
348 |
+
elif 'mistral-large' in self.model_id.lower():
|
349 |
+
api_key = os.environ["MISTRAL_API_KEY"]
|
350 |
+
client = MistralClient(api_key=api_key)
|
351 |
+
|
352 |
+
messages = [
|
353 |
+
ChatMessage(role="system", content=system_prompt),
|
354 |
+
ChatMessage(role="user", content=user_prompt)
|
355 |
+
]
|
356 |
+
|
357 |
+
# No streaming
|
358 |
+
chat_response = client.chat(
|
359 |
+
model=self.model_id,
|
360 |
+
messages=messages,
|
361 |
+
)
|
362 |
+
result = chat_response.choices[0].message.content
|
363 |
+
print(result)
|
364 |
+
return result
|
365 |
+
|
366 |
# Using HF API or download checkpoints
|
367 |
elif self.local_model is None and self.local_pipeline is None:
|
368 |
try: # try use HuggingFace API
|
|
|
376 |
api_base=self.api_base,
|
377 |
)
|
378 |
result = response['choices'][0]['message']['content']
|
379 |
+
result = result.split('<|im_end|>')[0]
|
380 |
print(result)
|
381 |
return result
|
382 |
except Exception as e:
|
383 |
+
if 'Rate limit reached' in str(e) and 'yi-1.5' not in self.model_id.lower():
|
384 |
wait_time = 300
|
385 |
current_time = datetime.now().strftime('%H:%M:%S')
|
386 |
print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
|
387 |
time.sleep(wait_time)
|
388 |
else:
|
389 |
+
if using_pipeline:
|
390 |
self.local_pipeline = pipeline(
|
391 |
"text-generation",
|
392 |
model=self.model_id,
|
393 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
394 |
device_map="auto",
|
395 |
)
|
396 |
+
else:
|
397 |
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf" if 'openelm' in self.model_id.lower() else self.model_id, trust_remote_code=True)
|
398 |
print("Tokenizer loaded")
|
399 |
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
|
|
|
402 |
|
403 |
# Using local model/pipeline
|
404 |
if self.local_pipeline:
|
405 |
+
print('Using Transformers pipeline')
|
406 |
messages=[
|
407 |
{"role": "system", "content": system_prompt},
|
408 |
{"role": "user", "content": user_prompt}
|
|
|
416 |
return result
|
417 |
|
418 |
elif self.local_model: # cannot call API. using local model / pipeline
|
419 |
+
print('Using local model')
|
420 |
if 'gemma' in self.model_id.lower() or 'mistral-7b' in self.model_id.lower():
|
421 |
messages=[
|
422 |
# gemma-1.1, mistral-7b does not accept system role
|
|
|
427 |
elif 'phi-2' in self.model_id.lower():
|
428 |
prompt = system_prompt + '\n' + user_prompt
|
429 |
|
430 |
+
elif 'intel' in self.model_id.lower():
|
431 |
+
prompt = f"### System:\n{system_prompt}\n### User:\n{user_prompt}\n### Assistant:\n"
|
432 |
+
|
433 |
else:
|
434 |
messages=[
|
435 |
{"role": "system", "content": system_prompt},
|
436 |
{"role": "user", "content": user_prompt}
|
437 |
]
|
438 |
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
|
439 |
+
# print(prompt)
|
440 |
+
# print('-'*50)
|
441 |
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
|
442 |
with torch.no_grad():
|
443 |
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
|
444 |
+
if 'glm' in self.model_id.lower():
|
445 |
+
outputs = outputs[:, input_ids['input_ids'].shape[1]:]
|
446 |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
447 |
if 'gemma-2' in self.model_id.lower():
|
448 |
result = result.split(user_prompt + '\nmodel')[-1].strip()
|
449 |
+
|
450 |
+
elif 'intel' in self.model_id.lower():
|
451 |
+
result = result.split("### Assistant:\n")[-1]
|
452 |
+
|
453 |
else:
|
454 |
result = result.replace(prompt.strip(), '')
|
455 |
|
|
|
527 |
try:
|
528 |
# summary_pieces = summary.split('\n')
|
529 |
# summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1]
|
530 |
+
summary = summary.replace('<bos>','').replace('<eos>','').strip()
|
531 |
score = self.model.predict([doc, summary])# [0]
|
532 |
if not isinstance(score, float):
|
533 |
try:
|
src/backend/run_eval_suite.py
CHANGED
@@ -56,8 +56,10 @@ def run_evaluation(eval_request: EvalRequest, batch_size, device,
|
|
56 |
path_in_repo=envs.LEADERBOARD_DATASET_PATH.split('/')[-1],
|
57 |
repo_id=envs.LEADERBOARD_DATASET_REPO,
|
58 |
repo_type="dataset",
|
|
|
59 |
)
|
60 |
-
|
|
|
61 |
except Exception as e:
|
62 |
logging.error(f"Error during evaluation: {e}")
|
63 |
raise
|
@@ -70,10 +72,10 @@ def run_evaluation(eval_request: EvalRequest, batch_size, device,
|
|
70 |
os.makedirs(output_folder, exist_ok=True)
|
71 |
with open(output_path, "w") as f:
|
72 |
f.write(dumped)
|
73 |
-
|
74 |
|
75 |
if not need_check:
|
76 |
-
|
77 |
envs.API.upload_file(
|
78 |
path_or_fileobj=output_path,
|
79 |
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
|
|
|
56 |
path_in_repo=envs.LEADERBOARD_DATASET_PATH.split('/')[-1],
|
57 |
repo_id=envs.LEADERBOARD_DATASET_REPO,
|
58 |
repo_type="dataset",
|
59 |
+
commit_message=f"Update results for {eval_request.model}"
|
60 |
)
|
61 |
+
logging.info(f"Leaderboard result dataset has been updated to {envs.LEADERBOARD_DATASET_PATH}/{envs.LEADERBOARD_DATASET_PATH.split('/')[-1]}")
|
62 |
+
|
63 |
except Exception as e:
|
64 |
logging.error(f"Error during evaluation: {e}")
|
65 |
raise
|
|
|
72 |
os.makedirs(output_folder, exist_ok=True)
|
73 |
with open(output_path, "w") as f:
|
74 |
f.write(dumped)
|
75 |
+
logging.info(f"Results have been saved to{output_path}")
|
76 |
|
77 |
if not need_check:
|
78 |
+
logging.info(f"Path in the repo: {eval_request.model}/results_{datetime.now()}.json")
|
79 |
envs.API.upload_file(
|
80 |
path_or_fileobj=output_path,
|
81 |
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
|