Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Miaoran000
commited on
Commit
·
5c4aa1e
1
Parent(s):
2aa9a75
minor updates
Browse files- .gitignore +4 -0
- requirements.txt +6 -1
- src/backend/evaluate_model.py +19 -6
- src/backend/model_operations.py +114 -33
.gitignore
CHANGED
@@ -18,3 +18,7 @@ src/assets/model_counts.html
|
|
18 |
|
19 |
generation_results/
|
20 |
Hallucination Leaderboard Results
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
generation_results/
|
20 |
Hallucination Leaderboard Results
|
21 |
+
dataset_stats.py
|
22 |
+
|
23 |
+
get_comparison.py
|
24 |
+
GPT-4-Turbo_v.s._GPT-4o.csv
|
requirements.txt
CHANGED
@@ -14,4 +14,9 @@ requests==2.28.2
|
|
14 |
tqdm==4.65.0
|
15 |
transformers==4.35.2
|
16 |
tokenizers>=0.15.0
|
17 |
-
sentence-transformers==2.2.2
|
|
|
|
|
|
|
|
|
|
|
|
14 |
tqdm==4.65.0
|
15 |
transformers==4.35.2
|
16 |
tokenizers>=0.15.0
|
17 |
+
sentence-transformers==2.2.2
|
18 |
+
google-generativeai
|
19 |
+
replicate
|
20 |
+
anthropic
|
21 |
+
openai
|
22 |
+
cohere
|
src/backend/evaluate_model.py
CHANGED
@@ -110,11 +110,14 @@ class Evaluator:
|
|
110 |
|
111 |
source_summary_df = self.generated_summaries_df[["source", "summary"]]
|
112 |
|
113 |
-
#
|
114 |
-
#
|
115 |
-
# existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries.csv'), encoding='utf-8'
|
116 |
# mask = existing_df['model'] == self.model
|
117 |
# existing_df = existing_df[~mask]
|
|
|
|
|
|
|
118 |
# # get new result
|
119 |
leaderboard_summaries_df = source_summary_df
|
120 |
leaderboard_summaries_df.insert(2, "model", [self.model]*leaderboard_summaries_df.shape[0])
|
@@ -124,12 +127,22 @@ class Evaluator:
|
|
124 |
# update leaderboard_summaries_with_scores.csv
|
125 |
# BUG: get error when opening the file
|
126 |
# existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'),
|
127 |
-
# encoding='utf-8', sep=",",
|
128 |
# print(existing_df.shape)
|
|
|
|
|
129 |
# mask = existing_df['model'] == self.model
|
130 |
# existing_df = existing_df[~mask]
|
131 |
-
# get new result
|
132 |
leaderboard_summaries_with_scores_df = pd.DataFrame.from_dict(self.eval_results)
|
133 |
leaderboard_summaries_with_scores_df.insert(3, "model", [self.model]*leaderboard_summaries_with_scores_df.shape[0])
|
134 |
leaderboard_summaries_with_scores_df.to_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'), mode='a', index=False, header=False)
|
135 |
-
print('leaderboard_summaries_with_scores.csv has been updated')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
source_summary_df = self.generated_summaries_df[["source", "summary"]]
|
112 |
|
113 |
+
#update leaderboard_summaries.csv
|
114 |
+
#first remove previous results for the current model
|
115 |
+
# existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries.csv'), encoding='utf-8')
|
116 |
# mask = existing_df['model'] == self.model
|
117 |
# existing_df = existing_df[~mask]
|
118 |
+
# print(existing_df.shape)
|
119 |
+
# summary_doc = set(existing_df['model'].values.tolist())
|
120 |
+
# print(summary_doc)
|
121 |
# # get new result
|
122 |
leaderboard_summaries_df = source_summary_df
|
123 |
leaderboard_summaries_df.insert(2, "model", [self.model]*leaderboard_summaries_df.shape[0])
|
|
|
127 |
# update leaderboard_summaries_with_scores.csv
|
128 |
# BUG: get error when opening the file
|
129 |
# existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'),
|
130 |
+
# encoding='utf-8', sep=",", quotechar='"', quoting=2)
|
131 |
# print(existing_df.shape)
|
132 |
+
# score_doc = set(existing_df['model'].values.tolist())
|
133 |
+
# print(score_doc)
|
134 |
# mask = existing_df['model'] == self.model
|
135 |
# existing_df = existing_df[~mask]
|
136 |
+
# # get new result
|
137 |
leaderboard_summaries_with_scores_df = pd.DataFrame.from_dict(self.eval_results)
|
138 |
leaderboard_summaries_with_scores_df.insert(3, "model", [self.model]*leaderboard_summaries_with_scores_df.shape[0])
|
139 |
leaderboard_summaries_with_scores_df.to_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'), mode='a', index=False, header=False)
|
140 |
+
print('leaderboard_summaries_with_scores.csv has been updated')
|
141 |
+
|
142 |
+
# for model in summary_doc:
|
143 |
+
# if model not in score_doc:
|
144 |
+
# print(f"{model} records missing in leaderboard_summaries_with_scores.csv")
|
145 |
+
|
146 |
+
# for model in score_doc:
|
147 |
+
# if model not in summary_doc:
|
148 |
+
# print(f"{model} records missing in leaderboard_summaries.csv")
|
src/backend/model_operations.py
CHANGED
@@ -13,18 +13,21 @@ from sentence_transformers import CrossEncoder
|
|
13 |
import litellm
|
14 |
# from litellm import completion
|
15 |
from tqdm import tqdm
|
16 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
|
17 |
# from accelerate import PartialState
|
18 |
# from accelerate.inference import prepare_pippy
|
19 |
import torch
|
20 |
import cohere
|
21 |
from openai import OpenAI
|
|
|
|
|
|
|
22 |
import google.generativeai as genai
|
23 |
|
24 |
import src.backend.util as util
|
25 |
import src.envs as envs
|
26 |
|
27 |
-
litellm.set_verbose=
|
28 |
|
29 |
# Set up basic configuration for logging
|
30 |
logging.basicConfig(level=logging.INFO,
|
@@ -123,15 +126,15 @@ class SummaryGenerator:
|
|
123 |
break
|
124 |
except Exception as e:
|
125 |
if 'Rate limit reached' in str(e):
|
126 |
-
wait_time =
|
127 |
current_time = datetime.now().strftime('%H:%M:%S')
|
128 |
-
print(f"Rate limit hit at {current_time}. Waiting for
|
129 |
time.sleep(wait_time)
|
130 |
elif 'is currently loading' in str(e):
|
131 |
wait_time = 200
|
132 |
print(f"Model is loading, wait for {wait_time}")
|
133 |
time.sleep(wait_time)
|
134 |
-
elif '429
|
135 |
wait_time = 60
|
136 |
print(f"Quota has reached, wait for {wait_time}")
|
137 |
time.sleep(wait_time)
|
@@ -166,13 +169,14 @@ class SummaryGenerator:
|
|
166 |
def generate_summary(self, system_prompt: str, user_prompt: str):
|
167 |
# Using Together AI API
|
168 |
using_together_api = False
|
169 |
-
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3']
|
170 |
for together_ai_api_model in together_ai_api_models:
|
171 |
if together_ai_api_model in self.model_id.lower():
|
172 |
using_together_api = True
|
173 |
break
|
174 |
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
|
175 |
if using_together_api:
|
|
|
176 |
# suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
|
177 |
suffix = "chat/completions"
|
178 |
url = f"https://api.together.xyz/v1/{suffix}"
|
@@ -184,14 +188,6 @@ class SummaryGenerator:
|
|
184 |
"temperature": 0.0,
|
185 |
# 'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
|
186 |
}
|
187 |
-
# if 'mixtral' in self.model_id.lower():
|
188 |
-
# # payload['prompt'] = user_prompt
|
189 |
-
# # payload['prompt'] = "Write a summary of the following passage:\nPassage:\n" + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
|
190 |
-
# payload['prompt'] = 'You must stick to the passage provided. Provide a concise summary of the following passage, covering the core pieces of information described:\nPassage:\n' + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
|
191 |
-
# print(payload)
|
192 |
-
# else:
|
193 |
-
# payload['messages'] = [{"role": "system", "content": system_prompt},
|
194 |
-
# {"role": "user", "content": user_prompt}]
|
195 |
payload['messages'] = [{"role": "system", "content": system_prompt},
|
196 |
{"role": "user", "content": user_prompt}]
|
197 |
headers = {
|
@@ -201,6 +197,7 @@ class SummaryGenerator:
|
|
201 |
}
|
202 |
|
203 |
response = requests.post(url, json=payload, headers=headers)
|
|
|
204 |
try:
|
205 |
result = json.loads(response.text)
|
206 |
# print(result)
|
@@ -219,14 +216,16 @@ class SummaryGenerator:
|
|
219 |
|
220 |
# Using OpenAI API
|
221 |
elif 'gpt' in self.model_id.lower():
|
222 |
-
|
|
|
223 |
model=self.model_id.replace('openai/',''),
|
224 |
messages=[{"role": "system", "content": system_prompt},
|
225 |
{"role": "user", "content": user_prompt}],
|
226 |
temperature=0.0,
|
227 |
max_tokens=250,
|
228 |
)
|
229 |
-
|
|
|
230 |
print(result)
|
231 |
return result
|
232 |
|
@@ -258,10 +257,11 @@ class SummaryGenerator:
|
|
258 |
"threshold": "BLOCK_NONE"
|
259 |
},
|
260 |
]
|
261 |
-
model = genai.GenerativeModel(model_name=
|
262 |
generation_config=generation_config,
|
263 |
system_instruction=system_prompt,
|
264 |
safety_settings=safety_settings)
|
|
|
265 |
convo = model.start_chat(history=[])
|
266 |
convo.send_message(user_prompt)
|
267 |
# print(convo.last)
|
@@ -269,39 +269,116 @@ class SummaryGenerator:
|
|
269 |
print(result)
|
270 |
return result
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
# Using HF API or download checkpoints
|
273 |
elif self.local_model is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
try: # try use HuggingFace API
|
275 |
-
|
276 |
response = litellm.completion(
|
277 |
model='command-r-plus' if 'command' in self.model else self.model,
|
278 |
messages=[{"role": "system", "content": system_prompt},
|
279 |
{"role": "user", "content": user_prompt}],
|
280 |
temperature=0.0,
|
281 |
-
max_tokens=
|
282 |
api_base=self.api_base,
|
283 |
)
|
284 |
result = response['choices'][0]['message']['content']
|
|
|
285 |
return result
|
286 |
-
except
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
# Using local model
|
293 |
if self.local_model: # cannot call API. using local model
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
print(prompt)
|
|
|
300 |
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
|
301 |
with torch.no_grad():
|
302 |
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
|
303 |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
304 |
-
|
|
|
|
|
|
|
|
|
305 |
print(result)
|
306 |
return result
|
307 |
|
@@ -371,14 +448,12 @@ class EvaluationModel:
|
|
371 |
summaries = []
|
372 |
source_summary_pairs = util.create_pairs(summaries_df)
|
373 |
|
374 |
-
for doc, summary in
|
375 |
if util.is_summary_valid(summary):
|
376 |
try:
|
377 |
# summary_pieces = summary.split('\n')
|
378 |
# summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1]
|
379 |
summary = summary.replace('<bos>','').replace('<eos>','')
|
380 |
-
# print([doc, summary])
|
381 |
-
# print(self.model.predict([doc, summary]))
|
382 |
score = self.model.predict([doc, summary])# [0]
|
383 |
if not isinstance(score, float):
|
384 |
try:
|
@@ -386,6 +461,12 @@ class EvaluationModel:
|
|
386 |
except:
|
387 |
logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
|
388 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
hem_scores.append(score)
|
390 |
sources.append(doc)
|
391 |
summaries.append(summary)
|
|
|
13 |
import litellm
|
14 |
# from litellm import completion
|
15 |
from tqdm import tqdm
|
16 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig, pipeline
|
17 |
# from accelerate import PartialState
|
18 |
# from accelerate.inference import prepare_pippy
|
19 |
import torch
|
20 |
import cohere
|
21 |
from openai import OpenAI
|
22 |
+
import anthropic
|
23 |
+
import replicate
|
24 |
+
# pip install -U google-generativeai
|
25 |
import google.generativeai as genai
|
26 |
|
27 |
import src.backend.util as util
|
28 |
import src.envs as envs
|
29 |
|
30 |
+
litellm.set_verbose=True
|
31 |
|
32 |
# Set up basic configuration for logging
|
33 |
logging.basicConfig(level=logging.INFO,
|
|
|
126 |
break
|
127 |
except Exception as e:
|
128 |
if 'Rate limit reached' in str(e):
|
129 |
+
wait_time = 300
|
130 |
current_time = datetime.now().strftime('%H:%M:%S')
|
131 |
+
print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
|
132 |
time.sleep(wait_time)
|
133 |
elif 'is currently loading' in str(e):
|
134 |
wait_time = 200
|
135 |
print(f"Model is loading, wait for {wait_time}")
|
136 |
time.sleep(wait_time)
|
137 |
+
elif '429' in str(e): # for gemini models
|
138 |
wait_time = 60
|
139 |
print(f"Quota has reached, wait for {wait_time}")
|
140 |
time.sleep(wait_time)
|
|
|
169 |
def generate_summary(self, system_prompt: str, user_prompt: str):
|
170 |
# Using Together AI API
|
171 |
using_together_api = False
|
172 |
+
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3', 'qwen'] #, 'mistralai'
|
173 |
for together_ai_api_model in together_ai_api_models:
|
174 |
if together_ai_api_model in self.model_id.lower():
|
175 |
using_together_api = True
|
176 |
break
|
177 |
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
|
178 |
if using_together_api:
|
179 |
+
# print('using together api')
|
180 |
# suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
|
181 |
suffix = "chat/completions"
|
182 |
url = f"https://api.together.xyz/v1/{suffix}"
|
|
|
188 |
"temperature": 0.0,
|
189 |
# 'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
|
190 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
payload['messages'] = [{"role": "system", "content": system_prompt},
|
192 |
{"role": "user", "content": user_prompt}]
|
193 |
headers = {
|
|
|
197 |
}
|
198 |
|
199 |
response = requests.post(url, json=payload, headers=headers)
|
200 |
+
print(response)
|
201 |
try:
|
202 |
result = json.loads(response.text)
|
203 |
# print(result)
|
|
|
216 |
|
217 |
# Using OpenAI API
|
218 |
elif 'gpt' in self.model_id.lower():
|
219 |
+
client = OpenAI()
|
220 |
+
response = client.chat.completions.create(
|
221 |
model=self.model_id.replace('openai/',''),
|
222 |
messages=[{"role": "system", "content": system_prompt},
|
223 |
{"role": "user", "content": user_prompt}],
|
224 |
temperature=0.0,
|
225 |
max_tokens=250,
|
226 |
)
|
227 |
+
# print(response)
|
228 |
+
result = response.choices[0].message.content
|
229 |
print(result)
|
230 |
return result
|
231 |
|
|
|
257 |
"threshold": "BLOCK_NONE"
|
258 |
},
|
259 |
]
|
260 |
+
model = genai.GenerativeModel(model_name=self.model_id.lower().split('google/')[-1],
|
261 |
generation_config=generation_config,
|
262 |
system_instruction=system_prompt,
|
263 |
safety_settings=safety_settings)
|
264 |
+
# print(model)
|
265 |
convo = model.start_chat(history=[])
|
266 |
convo.send_message(user_prompt)
|
267 |
# print(convo.last)
|
|
|
269 |
print(result)
|
270 |
return result
|
271 |
|
272 |
+
elif 'snowflake' in self.model_id.lower():
|
273 |
+
print("using replicate")
|
274 |
+
input = {
|
275 |
+
"prompt": user_prompt,
|
276 |
+
"temperature": 0,
|
277 |
+
"max_new_tokens": 250,
|
278 |
+
"stop_sequences": "<|im_end|>",
|
279 |
+
"prompt_template": f"<|im_start|>system\n{system_prompt}<|im_end|>\n" + "<|im_start|>user\n{prompt}<|im_end|>\n\n<|im_start|>assistant\n",
|
280 |
+
}
|
281 |
+
response = replicate.run(
|
282 |
+
self.model_id.lower(),
|
283 |
+
input=input
|
284 |
+
)
|
285 |
+
if isinstance(response, list):
|
286 |
+
response = ''.join(response)
|
287 |
+
print(response)
|
288 |
+
print()
|
289 |
+
|
290 |
+
return response
|
291 |
+
|
292 |
+
elif 'claude' in self.model_id.lower(): # using anthropic api
|
293 |
+
client = anthropic.Anthropic()
|
294 |
+
message = client.messages.create(
|
295 |
+
model=self.model_id.split('/')[-1],
|
296 |
+
max_tokens=250,
|
297 |
+
temperature=0,
|
298 |
+
system=system_prompt,
|
299 |
+
messages=[
|
300 |
+
{
|
301 |
+
"role": "user",
|
302 |
+
"content": [
|
303 |
+
{
|
304 |
+
"type": "text",
|
305 |
+
"text": user_prompt
|
306 |
+
}
|
307 |
+
]
|
308 |
+
}
|
309 |
+
]
|
310 |
+
)
|
311 |
+
result = message.content[0].text
|
312 |
+
print(result)
|
313 |
+
return result
|
314 |
+
|
315 |
# Using HF API or download checkpoints
|
316 |
elif self.local_model is None:
|
317 |
+
# response = litellm.completion(
|
318 |
+
# model='command-r-plus' if 'command' in self.model else self.model,
|
319 |
+
# messages=[{"role": "system", "content": system_prompt},
|
320 |
+
# {"role": "user", "content": user_prompt}],
|
321 |
+
# temperature=0.0,
|
322 |
+
# max_tokens=256,
|
323 |
+
# api_base=self.api_base,
|
324 |
+
# )
|
325 |
+
# result = response['choices'][0]['message']['content']
|
326 |
+
# print(result)
|
327 |
+
# return result
|
328 |
try: # try use HuggingFace API
|
329 |
+
print('using huggingface api')
|
330 |
response = litellm.completion(
|
331 |
model='command-r-plus' if 'command' in self.model else self.model,
|
332 |
messages=[{"role": "system", "content": system_prompt},
|
333 |
{"role": "user", "content": user_prompt}],
|
334 |
temperature=0.0,
|
335 |
+
max_tokens=250,
|
336 |
api_base=self.api_base,
|
337 |
)
|
338 |
result = response['choices'][0]['message']['content']
|
339 |
+
print(result)
|
340 |
return result
|
341 |
+
except Exception as e:
|
342 |
+
if 'Rate limit reached' in str(e):
|
343 |
+
wait_time = 300
|
344 |
+
current_time = datetime.now().strftime('%H:%M:%S')
|
345 |
+
print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
|
346 |
+
time.sleep(wait_time)
|
347 |
+
else:
|
348 |
+
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf" if 'openelm' in self.model_id.lower() else self.model_id, trust_remote_code=True)
|
349 |
+
print("Tokenizer loaded")
|
350 |
+
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
|
351 |
+
print("Local model loaded")
|
352 |
|
353 |
# Using local model
|
354 |
if self.local_model: # cannot call API. using local model
|
355 |
+
if 'gemma' in self.model_id.lower() or 'mistral-7b' in self.model_id.lower():
|
356 |
+
messages=[
|
357 |
+
# gemma-1.1, mistral-7b does not accept system role
|
358 |
+
{"role": "user", "content": system_prompt + ' ' + user_prompt}
|
359 |
+
]
|
360 |
+
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
|
361 |
+
|
362 |
+
elif 'phi-2' in self.model_id.lower():
|
363 |
+
prompt = system_prompt + '\n' + user_prompt
|
364 |
+
|
365 |
+
else:
|
366 |
+
messages=[
|
367 |
+
{"role": "system", "content": system_prompt}, # gemma-1.1, mistral-7b does not accept system role
|
368 |
+
{"role": "user", "content": user_prompt}
|
369 |
+
]
|
370 |
+
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
|
371 |
print(prompt)
|
372 |
+
print('-'*50)
|
373 |
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
|
374 |
with torch.no_grad():
|
375 |
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
|
376 |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
377 |
+
if 'gemma-2' in self.model_id.lower():
|
378 |
+
result = result.split(user_prompt + '\nmodel')[-1].strip()
|
379 |
+
else:
|
380 |
+
result = result.replace(prompt.strip(), '')
|
381 |
+
|
382 |
print(result)
|
383 |
return result
|
384 |
|
|
|
448 |
summaries = []
|
449 |
source_summary_pairs = util.create_pairs(summaries_df)
|
450 |
|
451 |
+
for doc, summary in source_summary_pairs:
|
452 |
if util.is_summary_valid(summary):
|
453 |
try:
|
454 |
# summary_pieces = summary.split('\n')
|
455 |
# summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1]
|
456 |
summary = summary.replace('<bos>','').replace('<eos>','')
|
|
|
|
|
457 |
score = self.model.predict([doc, summary])# [0]
|
458 |
if not isinstance(score, float):
|
459 |
try:
|
|
|
461 |
except:
|
462 |
logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
|
463 |
continue
|
464 |
+
# print inconsistent summaries for checking
|
465 |
+
if score < 0.5:
|
466 |
+
print(doc)
|
467 |
+
print('-'*10)
|
468 |
+
print(summary)
|
469 |
+
print('='*20)
|
470 |
hem_scores.append(score)
|
471 |
sources.append(doc)
|
472 |
summaries.append(summary)
|