Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Minseok Bae
commited on
Commit
·
1f26f6c
1
Parent(s):
2c24f05
Fixed the leaderboard filtering functionality. Modified filter_models() function in app.py/
Browse files- app.py +8 -5
- src/populate.py +1 -1
app.py
CHANGED
@@ -94,11 +94,14 @@ def filter_models(
|
|
94 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
95 |
) -> pd.DataFrame:
|
96 |
# Show all models
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
type_emoji = [t[0] for t in type_query]
|
103 |
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
104 |
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
|
|
94 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
95 |
) -> pd.DataFrame:
|
96 |
# Show all models
|
97 |
+
filtered_df = df
|
98 |
+
# if show_deleted:
|
99 |
+
# filtered_df = df
|
100 |
+
# else: # Show only still on the hub models
|
101 |
+
# filtered_df = df[df[utils.AutoEvalColumn.still_on_hub.name]]
|
102 |
+
|
103 |
+
filtered_df = df
|
104 |
+
|
105 |
type_emoji = [t[0] for t in type_query]
|
106 |
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
107 |
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
src/populate.py
CHANGED
@@ -13,7 +13,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
13 |
all_data_json = [v.to_dict() for v in raw_data]
|
14 |
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
-
df = df.sort_values(by=[utils.AutoEvalColumn.
|
17 |
df = df[cols].round(decimals=2)
|
18 |
|
19 |
# filter out if any of the benchmarks have not been produced
|
|
|
13 |
all_data_json = [v.to_dict() for v in raw_data]
|
14 |
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
+
df = df.sort_values(by=[utils.AutoEvalColumn.hallucination_rate.name], ascending=True)
|
17 |
df = df[cols].round(decimals=2)
|
18 |
|
19 |
# filter out if any of the benchmarks have not been produced
|