Spaces:
Runtime error
Runtime error
File size: 1,255 Bytes
8e1f74f a931f78 8e1f74f 32777f1 db3d08a 8e1f74f 2cb7578 db3d08a 2cb7578 db3d08a 8e1f74f a931f78 c9f6dd3 8e1f74f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Model configuration
MODEL_NAME = "deepseek-ai/DeepSeek-V3-Base" # Hugging Face model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
revision="main"
).to(device)
except Exception as e:
print(f"Error loading model: {e}")
raise
# FastAPI app initialization
app = FastAPI()
# Input schema
class Query(BaseModel):
input_text: str
@app.post("/predict")
async def predict(query: Query):
input_text = query.input_text
if not input_text:
raise HTTPException(status_code=400, detail="Input text cannot be empty.")
inputs = tokenizer(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs["input_ids"], max_new_tokens=50, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"response": response}
|