X-RayDemo / train.py
tousin23's picture
Upload 41 files
6551065 verified
import os
from pprint import pprint
from configs.config import parser
from dataset.data_module import DataModule
from lightning_tools.callbacks import add_callbacks
from models.R2GenGPT import R2GenGPT
from lightning.pytorch import seed_everything
import lightning.pytorch as pl
def train(args):
dm = DataModule(args)
callbacks = add_callbacks(args)
trainer = pl.Trainer(
devices=args.devices,
num_nodes=args.num_nodes,
strategy=args.strategy,
accelerator=args.accelerator,
precision=args.precision,
val_check_interval = args.val_check_interval,
limit_val_batches = args.limit_val_batches,
max_epochs = args.max_epochs,
num_sanity_val_steps = args.num_sanity_val_steps,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=callbacks["callbacks"],
logger=callbacks["loggers"]
)
if args.ckpt_file is not None:
model = R2GenGPT.load_from_checkpoint(args.ckpt_file, strict=False)
else:
model = R2GenGPT(args)
if args.test:
trainer.test(model, datamodule=dm)
elif args.validate:
trainer.validate(model, datamodule=dm)
else:
trainer.fit(model, datamodule=dm)
def main():
args = parser.parse_args()
os.makedirs(args.savedmodel_path, exist_ok=True)
pprint(vars(args))
seed_everything(42, workers=True)
train(args)
if __name__ == '__main__':
main()