Spaces:
totolook
/
Runtime error

KBaba7 commited on
Commit
cb73a75
·
verified ·
1 Parent(s): 1d5810f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -18
app.py CHANGED
@@ -3,6 +3,11 @@ import subprocess
3
  import streamlit as st
4
  from huggingface_hub import snapshot_download, login
5
 
 
 
 
 
 
6
  def check_directory_path(directory_name: str) -> str:
7
  if os.path.exists(directory_name):
8
  path = os.path.abspath(directory_name)
@@ -31,7 +36,6 @@ def convert_to_gguf(model_dir, output_file):
31
  """
32
  st.write(f"🔄 Converting `{model_dir}` to GGUF format...")
33
  os.makedirs(os.path.dirname(output_file), exist_ok=True)
34
- st.write(model_dir_path)
35
  cmd = [
36
  "python3", "/app/llama.cpp/convert_hf_to_gguf.py", model_dir,
37
  "--outtype", "f16", "--outfile", output_file
@@ -116,7 +120,6 @@ def upload_to_huggingface(file_path, repo_id, token):
116
  except Exception as e:
117
  st.error(f"❌ Failed to upload file: {e}")
118
 
119
- # Streamlit UI
120
  st.title("🦙 LLaMA Model Quantization (llama.cpp)")
121
 
122
  hf_model_name = st.text_input("Enter Hugging Face Model Name", "Qwen/Qwen2.5-1.5B")
@@ -125,20 +128,23 @@ start_button = st.button("🚀 Start Quantization")
125
 
126
  if start_button:
127
  with st.spinner("Processing..."):
128
- quantized_model_path = automate_llama_quantization(hf_model_name, quant_type)
129
- if quantized_model_path:
130
- with open(quantized_model_path, "rb") as f:
131
- st.download_button("⬇️ Download Quantized Model", f, file_name=os.path.basename(quantized_model_path))
132
- upload_to_hf = st.checkbox("Upload to Hugging Face")
 
 
 
 
 
 
 
 
133
 
134
- if upload_to_hf:
135
- st.write("### Upload to Hugging Face")
136
- repo_id = st.text_input("Enter Hugging Face Repository ID (e.g., 'username/repo-name')")
137
- hf_token = st.text_input("Enter Hugging Face Token", type="password")
138
-
139
- if st.button("📤 Upload to Hugging Face"):
140
- if repo_id and hf_token:
141
- with st.spinner("Uploading..."):
142
- upload_to_huggingface(quantized_model_path, repo_id, hf_token)
143
- else:
144
- st.warning("Please provide a valid repository ID and Hugging Face token.")
 
3
  import streamlit as st
4
  from huggingface_hub import snapshot_download, login
5
 
6
+ if "quantized_model_path" not in st.session_state:
7
+ st.session_state.quantized_model_path = None
8
+ if "upload_to_hf" not in st.session_state:
9
+ st.session_state.upload_to_hf = False
10
+
11
  def check_directory_path(directory_name: str) -> str:
12
  if os.path.exists(directory_name):
13
  path = os.path.abspath(directory_name)
 
36
  """
37
  st.write(f"🔄 Converting `{model_dir}` to GGUF format...")
38
  os.makedirs(os.path.dirname(output_file), exist_ok=True)
 
39
  cmd = [
40
  "python3", "/app/llama.cpp/convert_hf_to_gguf.py", model_dir,
41
  "--outtype", "f16", "--outfile", output_file
 
120
  except Exception as e:
121
  st.error(f"❌ Failed to upload file: {e}")
122
 
 
123
  st.title("🦙 LLaMA Model Quantization (llama.cpp)")
124
 
125
  hf_model_name = st.text_input("Enter Hugging Face Model Name", "Qwen/Qwen2.5-1.5B")
 
128
 
129
  if start_button:
130
  with st.spinner("Processing..."):
131
+ st.session_state.quantized_model_path = automate_llama_quantization(hf_model_name, quant_type)
132
+
133
+ if st.session_state.quantized_model_path:
134
+ with open(st.session_state.quantized_model_path, "rb") as f:
135
+ st.download_button("⬇️ Download Quantized Model", f, file_name=os.path.basename(st.session_state.quantized_model_path))
136
+
137
+ # Checkbox for upload section
138
+ st.session_state.upload_to_hf = st.checkbox("Upload to Hugging Face", value=st.session_state.upload_to_hf)
139
+
140
+ if st.session_state.upload_to_hf:
141
+ st.write("### Upload to Hugging Face")
142
+ repo_id = st.text_input("Enter Hugging Face Repository ID (e.g., 'username/repo-name')")
143
+ hf_token = st.text_input("Enter Hugging Face Token", type="password")
144
 
145
+ if st.button("📤 Upload to Hugging Face"):
146
+ if repo_id and hf_token:
147
+ with st.spinner("Uploading..."):
148
+ upload_to_huggingface(st.session_state.quantized_model_path, repo_id, hf_token)
149
+ else:
150
+ st.warning("Please provide a valid repository ID and Hugging Face token.")