Spaces:
totolook
/
Runtime error

KBaba7 commited on
Commit
3ec5df4
·
verified ·
1 Parent(s): 2846a5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -13
app.py CHANGED
@@ -3,8 +3,6 @@ import subprocess
3
  import streamlit as st
4
  from huggingface_hub import snapshot_download
5
 
6
- import subprocess
7
-
8
  def check_directory_path(directory_name: str) -> str:
9
  if os.path.exists(directory_name):
10
  path = os.path.abspath(directory_name)
@@ -16,9 +14,9 @@ QUANT_TYPES = [
16
  "Q5_K_M", "Q5_K_S", "Q6_K"
17
  ]
18
 
19
- model_dir_path=check_directory_path("llama.cpp")
20
 
21
- def download_model(hf_model_name, output_dir="models"):
22
  """
23
  Downloads a Hugging Face model and saves it locally.
24
  """
@@ -35,8 +33,8 @@ def convert_to_gguf(model_dir, output_file):
35
  os.makedirs(os.path.dirname(output_file), exist_ok=True)
36
  st.write(model_dir_path)
37
  cmd = [
38
- "python3", "/app/llama.cpp/convert_hf_to_gguf.py", model_dir,
39
- "--outtype", "f16", "--outfile", output_file
40
  ]
41
  process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
42
  if process.returncode == 0:
@@ -54,10 +52,10 @@ def quantize_llama(model_path, quantized_output_path, quant_type):
54
  subprocess.run(["chmod", "+x", quantize_path], check=True)
55
 
56
  cmd = [
57
- "/app/llama.cpp/build/bin/llama-quantize",
58
- model_path,
59
- quantized_output_path,
60
- quant_type
61
  ]
62
 
63
  process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
@@ -71,7 +69,7 @@ def automate_llama_quantization(hf_model_name, quant_type):
71
  """
72
  Orchestrates the entire quantization process.
73
  """
74
- output_dir = "models"
75
  gguf_file = os.path.join(output_dir, f"{hf_model_name.replace('/', '_')}.gguf")
76
  quantized_file = gguf_file.replace(".gguf", f"-{quant_type}.gguf")
77
 
@@ -107,5 +105,4 @@ if start_button:
107
  quantized_model_path = automate_llama_quantization(hf_model_name, quant_type)
108
  if quantized_model_path:
109
  with open(quantized_model_path, "rb") as f:
110
- st.download_button("⬇️ Download Quantized Model", f, file_name=os.path.basename(quantized_model_path))
111
-
 
3
  import streamlit as st
4
  from huggingface_hub import snapshot_download
5
 
 
 
6
  def check_directory_path(directory_name: str) -> str:
7
  if os.path.exists(directory_name):
8
  path = os.path.abspath(directory_name)
 
14
  "Q5_K_M", "Q5_K_S", "Q6_K"
15
  ]
16
 
17
+ model_dir_path = check_directory_path("/app/llama.cpp")
18
 
19
+ def download_model(hf_model_name, output_dir="/tmp/models"):
20
  """
21
  Downloads a Hugging Face model and saves it locally.
22
  """
 
33
  os.makedirs(os.path.dirname(output_file), exist_ok=True)
34
  st.write(model_dir_path)
35
  cmd = [
36
+ "python3", "/app/llama.cpp/convert_hf_to_gguf.py", model_dir,
37
+ "--outtype", "f16", "--outfile", output_file
38
  ]
39
  process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
40
  if process.returncode == 0:
 
52
  subprocess.run(["chmod", "+x", quantize_path], check=True)
53
 
54
  cmd = [
55
+ "/app/llama.cpp/build/bin/llama-quantize",
56
+ model_path,
57
+ quantized_output_path,
58
+ quant_type
59
  ]
60
 
61
  process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 
69
  """
70
  Orchestrates the entire quantization process.
71
  """
72
+ output_dir = "/tmp/models"
73
  gguf_file = os.path.join(output_dir, f"{hf_model_name.replace('/', '_')}.gguf")
74
  quantized_file = gguf_file.replace(".gguf", f"-{quant_type}.gguf")
75
 
 
105
  quantized_model_path = automate_llama_quantization(hf_model_name, quant_type)
106
  if quantized_model_path:
107
  with open(quantized_model_path, "rb") as f:
108
+ st.download_button("⬇️ Download Quantized Model", f, file_name=os.path.basename(quantized_model_path))