Spaces:
Runtime error
Runtime error
import gradio | |
from transformers import pipeline | |
# Merge split tokens starting with '##' | |
def merge_split_tokens(tokens): | |
merged_tokens = [] | |
for token in tokens: | |
if token["word"].startswith('##'): | |
merged_tokens[-1]["word"] += token["word"][2:] | |
else: | |
merged_tokens.append(token) | |
return merged_tokens | |
def process_swedish_text(text): | |
# Models from https://huggingface.co./models | |
# https://huggingface.co./KBLab/bert-base-swedish-cased-ner | |
nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner') | |
# Run NER | |
nlp_results = nlp(text) | |
print('nlp_results:', nlp_results) | |
nlp_results_merged = merge_split_tokens(nlp_results) | |
# Fix TypeError("'numpy.float32' object is not iterable") | |
nlp_results_adjusted = map(lambda entity: dict(entity, **{ 'score': float(entity['score']) }), nlp_results_merged) | |
print('nlp_results_adjusted:', nlp_results_adjusted) | |
# Return values | |
return {'entities': list(nlp_results_adjusted)} | |
gradio_interface = gradio.Interface( | |
fn=process_swedish_text, | |
inputs="text", | |
outputs="json", | |
examples=[ | |
["Jag heter Tom och bor i Stockholm."], | |
["Groens malmgård är en av Stockholms malmgårdar, belägen vid Malmgårdsvägen 53 på Södermalm i Stockholm."] | |
], | |
title="Swedish Entity Recognition", | |
description="Recognizing Swedish tokens e.g. locations and person names.", | |
article="© Tom Söderlund 2022" | |
) | |
gradio_interface.launch() | |