nexus / llama_2_inference.py
minhtcai
add interface
17b826e
# -*- coding: utf-8 -*-
"""Llama 2 Inference.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1tS9ep-M5slbxKrGP2btamFUhMM00QkKt
# Fine-tune Llama 2 in Google Colab
> 🗣️ Large Language Model Course
❤️ Created by [@maximelabonne](https://twitter.com/maximelabonne), based on Younes Belkada's [GitHub Gist](https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da). Special thanks to Tolga HOŞGÖR for his solution to empty the VRAM.
This notebook runs on a T4 GPU. (Last update: 24 Aug 2023)
"""
!pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
model = AutoModelForCausalLM.from_pretrained("tminh/llama-2-7b-glenda")
model_name = "TinyPixel/Llama-2-7B-bf16-sharded"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Ignore warnings
logging.set_verbosity(logging.CRITICAL)
# Run text generation pipeline with our next model
prompt = "What can drug D07OAC do?"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
result = pipe(f"<s>[INST] {prompt} [/INST]")
print(result[0]['generated_text'])