Spaces:
Running
on
Zero
Running
on
Zero
sdsdsdadasd3
commited on
Commit
·
acd6fd7
1
Parent(s):
85331ff
[Release] v1.0.1
Browse files- improve the performance
- improve efficiency
- depthcrafter/utils.py +15 -67
- requirements.txt +3 -1
- run.py +99 -84
depthcrafter/utils.py
CHANGED
@@ -1,79 +1,27 @@
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
-
import
|
3 |
import matplotlib.cm as cm
|
|
|
4 |
import torch
|
5 |
|
6 |
-
dataset_res_dict = {
|
7 |
-
"sintel":[448, 1024],
|
8 |
-
"scannet":[640, 832],
|
9 |
-
"kitti":[384, 1280],
|
10 |
-
"bonn":[512, 640],
|
11 |
-
"nyu":[448, 640],
|
12 |
-
}
|
13 |
-
|
14 |
-
def read_video_frames(video_path, process_length, target_fps, max_res, dataset):
|
15 |
-
# a simple function to read video frames
|
16 |
-
cap = cv2.VideoCapture(video_path)
|
17 |
-
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
18 |
-
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
19 |
-
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
20 |
-
# round the height and width to the nearest multiple of 64
|
21 |
-
|
22 |
-
if dataset=="open":
|
23 |
-
height = round(original_height / 64) * 64
|
24 |
-
width = round(original_width / 64) * 64
|
25 |
-
else:
|
26 |
-
height = dataset_res_dict[dataset][0]
|
27 |
-
width = dataset_res_dict[dataset][1]
|
28 |
-
|
29 |
-
# resize the video if the height or width is larger than max_res
|
30 |
-
if max(height, width) > max_res:
|
31 |
-
scale = max_res / max(original_height, original_width)
|
32 |
-
height = round(original_height * scale / 64) * 64
|
33 |
-
width = round(original_width * scale / 64) * 64
|
34 |
-
|
35 |
-
if target_fps < 0:
|
36 |
-
target_fps = original_fps
|
37 |
-
|
38 |
-
stride = max(round(original_fps / target_fps), 1)
|
39 |
-
|
40 |
-
frames = []
|
41 |
-
frame_count = 0
|
42 |
-
while cap.isOpened():
|
43 |
-
ret, frame = cap.read()
|
44 |
-
if not ret or (process_length > 0 and frame_count >= process_length):
|
45 |
-
break
|
46 |
-
if frame_count % stride == 0:
|
47 |
-
frame = cv2.resize(frame, (width, height))
|
48 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
|
49 |
-
frames.append(frame.astype("float32") / 255.0)
|
50 |
-
frame_count += 1
|
51 |
-
cap.release()
|
52 |
-
|
53 |
-
frames = np.array(frames)
|
54 |
-
return frames, target_fps
|
55 |
-
|
56 |
|
57 |
def save_video(
|
58 |
-
video_frames,
|
59 |
-
output_video_path,
|
60 |
-
fps: int =
|
|
|
61 |
) -> str:
|
62 |
-
|
63 |
-
|
64 |
-
is_color = video_frames[0].ndim == 3
|
65 |
-
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
66 |
-
video_writer = cv2.VideoWriter(
|
67 |
-
output_video_path, fourcc, fps, (width, height), isColor=is_color
|
68 |
-
)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
if is_color:
|
73 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
74 |
-
video_writer.write(frame)
|
75 |
|
76 |
-
|
|
|
|
|
77 |
return output_video_path
|
78 |
|
79 |
|
|
|
1 |
+
from typing import Union, List
|
2 |
+
import tempfile
|
3 |
import numpy as np
|
4 |
+
import PIL.Image
|
5 |
import matplotlib.cm as cm
|
6 |
+
import mediapy
|
7 |
import torch
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def save_video(
|
11 |
+
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]],
|
12 |
+
output_video_path: str = None,
|
13 |
+
fps: int = 10,
|
14 |
+
crf: int = 18,
|
15 |
) -> str:
|
16 |
+
if output_video_path is None:
|
17 |
+
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
if isinstance(video_frames[0], np.ndarray):
|
20 |
+
video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]
|
|
|
|
|
|
|
21 |
|
22 |
+
elif isinstance(video_frames[0], PIL.Image.Image):
|
23 |
+
video_frames = [np.array(frame) for frame in video_frames]
|
24 |
+
mediapy.write_video(output_video_path, video_frames, fps=fps, crf=crf)
|
25 |
return output_video_path
|
26 |
|
27 |
|
requirements.txt
CHANGED
@@ -2,7 +2,9 @@ torch==2.0.1
|
|
2 |
diffusers==0.29.1
|
3 |
numpy==1.26.4
|
4 |
matplotlib==3.8.4
|
5 |
-
opencv-python==4.8.1.78
|
6 |
transformers==4.41.2
|
7 |
accelerate==0.30.1
|
8 |
xformers==0.0.20
|
|
|
|
|
|
|
|
2 |
diffusers==0.29.1
|
3 |
numpy==1.26.4
|
4 |
matplotlib==3.8.4
|
|
|
5 |
transformers==4.41.2
|
6 |
accelerate==0.30.1
|
7 |
xformers==0.0.20
|
8 |
+
mediapy==1.2.0
|
9 |
+
fire==0.6.0
|
10 |
+
decord==0.6.0
|
run.py
CHANGED
@@ -2,12 +2,22 @@ import gc
|
|
2 |
import os
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
|
|
|
6 |
from diffusers.training_utils import set_seed
|
|
|
7 |
|
8 |
from depthcrafter.depth_crafter_ppl import DepthCrafterPipeline
|
9 |
from depthcrafter.unet import DiffusersUNetSpatioTemporalConditionModelDepthCrafter
|
10 |
-
from depthcrafter.utils import vis_sequence_depth, save_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
class DepthCrafterDemo:
|
@@ -49,6 +59,45 @@ class DepthCrafterDemo:
|
|
49 |
print("Xformers is not enabled")
|
50 |
self.pipe.enable_attention_slicing()
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def infer(
|
53 |
self,
|
54 |
video: str,
|
@@ -67,11 +116,13 @@ class DepthCrafterDemo:
|
|
67 |
):
|
68 |
set_seed(seed)
|
69 |
|
70 |
-
frames, target_fps = read_video_frames(
|
71 |
-
video,
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
-
print(f"==> video name: {video}, frames shape: {frames.shape}")
|
74 |
-
|
75 |
# inference the depth map using the DepthCrafter pipeline
|
76 |
with torch.inference_mode():
|
77 |
res = self.pipe(
|
@@ -128,91 +179,55 @@ class DepthCrafterDemo:
|
|
128 |
return res_path[:2]
|
129 |
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
default="tencent/DepthCrafter",
|
150 |
-
help="Path to the UNet model",
|
151 |
-
)
|
152 |
-
parser.add_argument(
|
153 |
-
"--pre-train-path",
|
154 |
-
type=str,
|
155 |
-
default="stabilityai/stable-video-diffusion-img2vid-xt",
|
156 |
-
help="Path to the pre-trained model",
|
157 |
-
)
|
158 |
-
parser.add_argument(
|
159 |
-
"--process-length", type=int, default=195, help="Number of frames to process"
|
160 |
-
)
|
161 |
-
parser.add_argument(
|
162 |
-
"--cpu-offload",
|
163 |
-
type=str,
|
164 |
-
default="model",
|
165 |
-
choices=["model", "sequential", None],
|
166 |
-
help="CPU offload option",
|
167 |
-
)
|
168 |
-
parser.add_argument(
|
169 |
-
"--target-fps", type=int, default=15, help="Target FPS for the output video"
|
170 |
-
) # -1 for original fps
|
171 |
-
parser.add_argument("--seed", type=int, default=42, help="Random seed")
|
172 |
-
parser.add_argument(
|
173 |
-
"--num-inference-steps", type=int, default=25, help="Number of inference steps"
|
174 |
-
)
|
175 |
-
parser.add_argument(
|
176 |
-
"--guidance-scale", type=float, default=1.2, help="Guidance scale"
|
177 |
-
)
|
178 |
-
parser.add_argument("--window-size", type=int, default=110, help="Window size")
|
179 |
-
parser.add_argument("--overlap", type=int, default=25, help="Overlap size")
|
180 |
-
parser.add_argument("--max-res", type=int, default=1024, help="Maximum resolution")
|
181 |
-
parser.add_argument(
|
182 |
-
"--dataset",
|
183 |
-
type=str,
|
184 |
-
default="open",
|
185 |
-
choices=["open", "sintel", "scannet", "kitti", "bonn", 'nyu'],
|
186 |
-
help="Assigned resolution for specific dataset evaluation"
|
187 |
-
)
|
188 |
-
parser.add_argument("--save_npz", type=bool, default=True, help="Save npz file")
|
189 |
-
parser.add_argument("--track_time", type=bool, default=False, help="Track time")
|
190 |
-
|
191 |
-
args = parser.parse_args()
|
192 |
-
|
193 |
depthcrafter_demo = DepthCrafterDemo(
|
194 |
-
unet_path=
|
195 |
-
pre_train_path=
|
196 |
-
cpu_offload=
|
197 |
)
|
198 |
# process the videos, the video paths are separated by comma
|
199 |
-
video_paths =
|
200 |
for video in video_paths:
|
201 |
depthcrafter_demo.infer(
|
202 |
video,
|
203 |
-
|
204 |
-
|
205 |
-
save_folder=
|
206 |
-
window_size=
|
207 |
-
process_length=
|
208 |
-
overlap=
|
209 |
-
max_res=
|
210 |
-
dataset=
|
211 |
-
target_fps=
|
212 |
-
seed=
|
213 |
-
track_time=
|
214 |
-
save_npz=
|
215 |
)
|
216 |
# clear the cache for the next video
|
217 |
gc.collect()
|
218 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
|
6 |
+
from decord import VideoReader, cpu
|
7 |
from diffusers.training_utils import set_seed
|
8 |
+
from fire import Fire
|
9 |
|
10 |
from depthcrafter.depth_crafter_ppl import DepthCrafterPipeline
|
11 |
from depthcrafter.unet import DiffusersUNetSpatioTemporalConditionModelDepthCrafter
|
12 |
+
from depthcrafter.utils import vis_sequence_depth, save_video
|
13 |
+
|
14 |
+
dataset_res_dict = {
|
15 |
+
"sintel": [448, 1024],
|
16 |
+
"scannet": [640, 832],
|
17 |
+
"KITTI": [384, 1280],
|
18 |
+
"bonn": [512, 640],
|
19 |
+
"NYUv2": [448, 640],
|
20 |
+
}
|
21 |
|
22 |
|
23 |
class DepthCrafterDemo:
|
|
|
59 |
print("Xformers is not enabled")
|
60 |
self.pipe.enable_attention_slicing()
|
61 |
|
62 |
+
@staticmethod
|
63 |
+
def read_video_frames(
|
64 |
+
video_path, process_length, target_fps, max_res, dataset="open"
|
65 |
+
):
|
66 |
+
if dataset == "open":
|
67 |
+
print("==> processing video: ", video_path)
|
68 |
+
vid = VideoReader(video_path, ctx=cpu(0))
|
69 |
+
print(
|
70 |
+
"==> original video shape: ", (len(vid), *vid.get_batch([0]).shape[1:])
|
71 |
+
)
|
72 |
+
original_height, original_width = vid.get_batch([0]).shape[1:3]
|
73 |
+
height = round(original_height / 64) * 64
|
74 |
+
width = round(original_width / 64) * 64
|
75 |
+
if max(height, width) > max_res:
|
76 |
+
scale = max_res / max(original_height, original_width)
|
77 |
+
height = round(original_height * scale / 64) * 64
|
78 |
+
width = round(original_width * scale / 64) * 64
|
79 |
+
else:
|
80 |
+
height = dataset_res_dict[dataset][0]
|
81 |
+
width = dataset_res_dict[dataset][1]
|
82 |
+
|
83 |
+
vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height)
|
84 |
+
|
85 |
+
fps = vid.get_avg_fps() if target_fps == -1 else target_fps
|
86 |
+
stride = round(vid.get_avg_fps() / fps)
|
87 |
+
stride = max(stride, 1)
|
88 |
+
frames_idx = list(range(0, len(vid), stride))
|
89 |
+
print(
|
90 |
+
f"==> downsampled shape: {len(frames_idx), *vid.get_batch([0]).shape[1:]}, with stride: {stride}"
|
91 |
+
)
|
92 |
+
if process_length != -1 and process_length < len(frames_idx):
|
93 |
+
frames_idx = frames_idx[:process_length]
|
94 |
+
print(
|
95 |
+
f"==> final processing shape: {len(frames_idx), *vid.get_batch([0]).shape[1:]}"
|
96 |
+
)
|
97 |
+
frames = vid.get_batch(frames_idx).asnumpy().astype("float32") / 255.0
|
98 |
+
|
99 |
+
return frames, fps
|
100 |
+
|
101 |
def infer(
|
102 |
self,
|
103 |
video: str,
|
|
|
116 |
):
|
117 |
set_seed(seed)
|
118 |
|
119 |
+
frames, target_fps = self.read_video_frames(
|
120 |
+
video,
|
121 |
+
process_length,
|
122 |
+
target_fps,
|
123 |
+
max_res,
|
124 |
+
dataset,
|
125 |
)
|
|
|
|
|
126 |
# inference the depth map using the DepthCrafter pipeline
|
127 |
with torch.inference_mode():
|
128 |
res = self.pipe(
|
|
|
179 |
return res_path[:2]
|
180 |
|
181 |
|
182 |
+
def main(
|
183 |
+
video_path: str,
|
184 |
+
save_folder: str = "./demo_output",
|
185 |
+
unet_path: str = "tencent/DepthCrafter",
|
186 |
+
pre_train_path: str = "stabilityai/stable-video-diffusion-img2vid-xt",
|
187 |
+
process_length: int = -1,
|
188 |
+
cpu_offload: str = "model",
|
189 |
+
target_fps: int = -1,
|
190 |
+
seed: int = 42,
|
191 |
+
num_inference_steps: int = 5,
|
192 |
+
guidance_scale: float = 1.0,
|
193 |
+
window_size: int = 110,
|
194 |
+
overlap: int = 25,
|
195 |
+
max_res: int = 1024,
|
196 |
+
dataset: str = "open",
|
197 |
+
save_npz: bool = True,
|
198 |
+
track_time: bool = False,
|
199 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
depthcrafter_demo = DepthCrafterDemo(
|
201 |
+
unet_path=unet_path,
|
202 |
+
pre_train_path=pre_train_path,
|
203 |
+
cpu_offload=cpu_offload,
|
204 |
)
|
205 |
# process the videos, the video paths are separated by comma
|
206 |
+
video_paths = video_path.split(",")
|
207 |
for video in video_paths:
|
208 |
depthcrafter_demo.infer(
|
209 |
video,
|
210 |
+
num_inference_steps,
|
211 |
+
guidance_scale,
|
212 |
+
save_folder=save_folder,
|
213 |
+
window_size=window_size,
|
214 |
+
process_length=process_length,
|
215 |
+
overlap=overlap,
|
216 |
+
max_res=max_res,
|
217 |
+
dataset=dataset,
|
218 |
+
target_fps=target_fps,
|
219 |
+
seed=seed,
|
220 |
+
track_time=track_time,
|
221 |
+
save_npz=save_npz,
|
222 |
)
|
223 |
# clear the cache for the next video
|
224 |
gc.collect()
|
225 |
torch.cuda.empty_cache()
|
226 |
+
|
227 |
+
|
228 |
+
if __name__ == "__main__":
|
229 |
+
# running configs
|
230 |
+
# the most important arguments for memory saving are `cpu_offload`, `enable_xformers`, `max_res`, and `window_size`
|
231 |
+
# the most important arguments for trade-off between quality and speed are
|
232 |
+
# `num_inference_steps`, `guidance_scale`, and `max_res`
|
233 |
+
Fire(main)
|