Spaces:
Running
on
Zero
Running
on
Zero
X-GAO
commited on
[Add] dataset creation, infer, eval
Browse files- benchmark/__init__.py +0 -0
- benchmark/csv/meta_bonn.csv +6 -0
- benchmark/csv/meta_kitti_val.csv +14 -0
- benchmark/csv/meta_nyu_test.csv +655 -0
- benchmark/csv/meta_scannet_test.csv +101 -0
- benchmark/csv/meta_sintel.csv +24 -0
- benchmark/dataset_extract/dataset_extract_bonn.py +155 -0
- benchmark/dataset_extract/dataset_extract_kitti.py +140 -0
- benchmark/dataset_extract/dataset_extract_nyu.py +106 -0
- benchmark/dataset_extract/dataset_extract_scannet.py +124 -0
- benchmark/dataset_extract/dataset_extract_sintel.py +137 -0
- benchmark/demo.sh +18 -0
- benchmark/eval/eval.py +282 -0
- benchmark/eval/eval.sh +51 -0
- benchmark/eval/metric.py +128 -0
- benchmark/infer/infer.sh +55 -0
- benchmark/infer/infer_batch.py +46 -0
benchmark/__init__.py
ADDED
File without changes
|
benchmark/csv/meta_bonn.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
filepath_left,filepath_disparity
|
2 |
+
bonn/rgbd_bonn_synchronous_rgb_left.mp4,bonn/rgbd_bonn_synchronous_disparity.npz
|
3 |
+
bonn/rgbd_bonn_person_tracking_rgb_left.mp4,bonn/rgbd_bonn_person_tracking_disparity.npz
|
4 |
+
bonn/rgbd_bonn_crowd2_rgb_left.mp4,bonn/rgbd_bonn_crowd2_disparity.npz
|
5 |
+
bonn/rgbd_bonn_crowd3_rgb_left.mp4,bonn/rgbd_bonn_crowd3_disparity.npz
|
6 |
+
bonn/rgbd_bonn_balloon2_rgb_left.mp4,bonn/rgbd_bonn_balloon2_disparity.npz
|
benchmark/csv/meta_kitti_val.csv
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
filepath_left,filepath_disparity
|
2 |
+
KITTI/2011_09_28_drive_0037_sync_rgb_left.mp4,KITTI/2011_09_28_drive_0037_sync_disparity.npz
|
3 |
+
KITTI/2011_09_26_drive_0005_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0005_sync_disparity.npz
|
4 |
+
KITTI/2011_09_30_drive_0016_sync_rgb_left.mp4,KITTI/2011_09_30_drive_0016_sync_disparity.npz
|
5 |
+
KITTI/2011_09_26_drive_0079_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0079_sync_disparity.npz
|
6 |
+
KITTI/2011_09_26_drive_0020_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0020_sync_disparity.npz
|
7 |
+
KITTI/2011_09_26_drive_0095_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0095_sync_disparity.npz
|
8 |
+
KITTI/2011_10_03_drive_0047_sync_rgb_left.mp4,KITTI/2011_10_03_drive_0047_sync_disparity.npz
|
9 |
+
KITTI/2011_09_26_drive_0113_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0113_sync_disparity.npz
|
10 |
+
KITTI/2011_09_26_drive_0036_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0036_sync_disparity.npz
|
11 |
+
KITTI/2011_09_26_drive_0013_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0013_sync_disparity.npz
|
12 |
+
KITTI/2011_09_26_drive_0002_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0002_sync_disparity.npz
|
13 |
+
KITTI/2011_09_29_drive_0026_sync_rgb_left.mp4,KITTI/2011_09_29_drive_0026_sync_disparity.npz
|
14 |
+
KITTI/2011_09_26_drive_0023_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0023_sync_disparity.npz
|
benchmark/csv/meta_nyu_test.csv
ADDED
@@ -0,0 +1,655 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
filepath_left,filepath_disparity
|
2 |
+
NYUv2/test/kitchen_0004/rgb_0001_rgb_left.mp4,NYUv2/test/kitchen_0004/rgb_0001_disparity.npz
|
3 |
+
NYUv2/test/kitchen_0004/rgb_0002_rgb_left.mp4,NYUv2/test/kitchen_0004/rgb_0002_disparity.npz
|
4 |
+
NYUv2/test/office_0005/rgb_0009_rgb_left.mp4,NYUv2/test/office_0005/rgb_0009_disparity.npz
|
5 |
+
NYUv2/test/office_0007/rgb_0014_rgb_left.mp4,NYUv2/test/office_0007/rgb_0014_disparity.npz
|
6 |
+
NYUv2/test/office_0008/rgb_0015_rgb_left.mp4,NYUv2/test/office_0008/rgb_0015_disparity.npz
|
7 |
+
NYUv2/test/office_0008/rgb_0016_rgb_left.mp4,NYUv2/test/office_0008/rgb_0016_disparity.npz
|
8 |
+
NYUv2/test/office_0008/rgb_0017_rgb_left.mp4,NYUv2/test/office_0008/rgb_0017_disparity.npz
|
9 |
+
NYUv2/test/office_0008/rgb_0018_rgb_left.mp4,NYUv2/test/office_0008/rgb_0018_disparity.npz
|
10 |
+
NYUv2/test/office_0010/rgb_0021_rgb_left.mp4,NYUv2/test/office_0010/rgb_0021_disparity.npz
|
11 |
+
NYUv2/test/office_0013/rgb_0028_rgb_left.mp4,NYUv2/test/office_0013/rgb_0028_disparity.npz
|
12 |
+
NYUv2/test/office_0013/rgb_0029_rgb_left.mp4,NYUv2/test/office_0013/rgb_0029_disparity.npz
|
13 |
+
NYUv2/test/office_0013/rgb_0030_rgb_left.mp4,NYUv2/test/office_0013/rgb_0030_disparity.npz
|
14 |
+
NYUv2/test/office_0013/rgb_0031_rgb_left.mp4,NYUv2/test/office_0013/rgb_0031_disparity.npz
|
15 |
+
NYUv2/test/office_0013/rgb_0032_rgb_left.mp4,NYUv2/test/office_0013/rgb_0032_disparity.npz
|
16 |
+
NYUv2/test/office_0013/rgb_0033_rgb_left.mp4,NYUv2/test/office_0013/rgb_0033_disparity.npz
|
17 |
+
NYUv2/test/office_0013/rgb_0034_rgb_left.mp4,NYUv2/test/office_0013/rgb_0034_disparity.npz
|
18 |
+
NYUv2/test/office_0014/rgb_0035_rgb_left.mp4,NYUv2/test/office_0014/rgb_0035_disparity.npz
|
19 |
+
NYUv2/test/office_0014/rgb_0036_rgb_left.mp4,NYUv2/test/office_0014/rgb_0036_disparity.npz
|
20 |
+
NYUv2/test/office_0014/rgb_0037_rgb_left.mp4,NYUv2/test/office_0014/rgb_0037_disparity.npz
|
21 |
+
NYUv2/test/office_0014/rgb_0038_rgb_left.mp4,NYUv2/test/office_0014/rgb_0038_disparity.npz
|
22 |
+
NYUv2/test/office_0015/rgb_0039_rgb_left.mp4,NYUv2/test/office_0015/rgb_0039_disparity.npz
|
23 |
+
NYUv2/test/office_0015/rgb_0040_rgb_left.mp4,NYUv2/test/office_0015/rgb_0040_disparity.npz
|
24 |
+
NYUv2/test/office_0015/rgb_0041_rgb_left.mp4,NYUv2/test/office_0015/rgb_0041_disparity.npz
|
25 |
+
NYUv2/test/office_0015/rgb_0042_rgb_left.mp4,NYUv2/test/office_0015/rgb_0042_disparity.npz
|
26 |
+
NYUv2/test/office_0015/rgb_0043_rgb_left.mp4,NYUv2/test/office_0015/rgb_0043_disparity.npz
|
27 |
+
NYUv2/test/bathroom_0003/rgb_0046_rgb_left.mp4,NYUv2/test/bathroom_0003/rgb_0046_disparity.npz
|
28 |
+
NYUv2/test/bathroom_0004/rgb_0047_rgb_left.mp4,NYUv2/test/bathroom_0004/rgb_0047_disparity.npz
|
29 |
+
NYUv2/test/bedroom_0011/rgb_0056_rgb_left.mp4,NYUv2/test/bedroom_0011/rgb_0056_disparity.npz
|
30 |
+
NYUv2/test/bedroom_0011/rgb_0057_rgb_left.mp4,NYUv2/test/bedroom_0011/rgb_0057_disparity.npz
|
31 |
+
NYUv2/test/bedroom_0013/rgb_0059_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0059_disparity.npz
|
32 |
+
NYUv2/test/bedroom_0013/rgb_0060_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0060_disparity.npz
|
33 |
+
NYUv2/test/bedroom_0013/rgb_0061_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0061_disparity.npz
|
34 |
+
NYUv2/test/bedroom_0013/rgb_0062_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0062_disparity.npz
|
35 |
+
NYUv2/test/bedroom_0013/rgb_0063_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0063_disparity.npz
|
36 |
+
NYUv2/test/bedroom_0018/rgb_0076_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0076_disparity.npz
|
37 |
+
NYUv2/test/bedroom_0018/rgb_0077_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0077_disparity.npz
|
38 |
+
NYUv2/test/bedroom_0018/rgb_0078_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0078_disparity.npz
|
39 |
+
NYUv2/test/bedroom_0018/rgb_0079_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0079_disparity.npz
|
40 |
+
NYUv2/test/bookstore_0001/rgb_0084_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0084_disparity.npz
|
41 |
+
NYUv2/test/bookstore_0001/rgb_0085_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0085_disparity.npz
|
42 |
+
NYUv2/test/bookstore_0001/rgb_0086_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0086_disparity.npz
|
43 |
+
NYUv2/test/bookstore_0001/rgb_0087_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0087_disparity.npz
|
44 |
+
NYUv2/test/bookstore_0001/rgb_0088_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0088_disparity.npz
|
45 |
+
NYUv2/test/bookstore_0001/rgb_0089_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0089_disparity.npz
|
46 |
+
NYUv2/test/bookstore_0001/rgb_0090_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0090_disparity.npz
|
47 |
+
NYUv2/test/bookstore_0001/rgb_0091_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0091_disparity.npz
|
48 |
+
NYUv2/test/bookstore_0001/rgb_0117_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0117_disparity.npz
|
49 |
+
NYUv2/test/bookstore_0001/rgb_0118_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0118_disparity.npz
|
50 |
+
NYUv2/test/bookstore_0001/rgb_0119_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0119_disparity.npz
|
51 |
+
NYUv2/test/kitchen_0005/rgb_0125_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0125_disparity.npz
|
52 |
+
NYUv2/test/kitchen_0005/rgb_0126_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0126_disparity.npz
|
53 |
+
NYUv2/test/kitchen_0005/rgb_0127_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0127_disparity.npz
|
54 |
+
NYUv2/test/kitchen_0005/rgb_0128_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0128_disparity.npz
|
55 |
+
NYUv2/test/kitchen_0005/rgb_0129_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0129_disparity.npz
|
56 |
+
NYUv2/test/kitchen_0007/rgb_0131_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0131_disparity.npz
|
57 |
+
NYUv2/test/kitchen_0007/rgb_0132_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0132_disparity.npz
|
58 |
+
NYUv2/test/kitchen_0007/rgb_0133_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0133_disparity.npz
|
59 |
+
NYUv2/test/kitchen_0007/rgb_0134_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0134_disparity.npz
|
60 |
+
NYUv2/test/kitchen_0009/rgb_0137_rgb_left.mp4,NYUv2/test/kitchen_0009/rgb_0137_disparity.npz
|
61 |
+
NYUv2/test/living_room_0008/rgb_0153_rgb_left.mp4,NYUv2/test/living_room_0008/rgb_0153_disparity.npz
|
62 |
+
NYUv2/test/living_room_0008/rgb_0154_rgb_left.mp4,NYUv2/test/living_room_0008/rgb_0154_disparity.npz
|
63 |
+
NYUv2/test/living_room_0009/rgb_0155_rgb_left.mp4,NYUv2/test/living_room_0009/rgb_0155_disparity.npz
|
64 |
+
NYUv2/test/living_room_0013/rgb_0167_rgb_left.mp4,NYUv2/test/living_room_0013/rgb_0167_disparity.npz
|
65 |
+
NYUv2/test/living_room_0013/rgb_0168_rgb_left.mp4,NYUv2/test/living_room_0013/rgb_0168_disparity.npz
|
66 |
+
NYUv2/test/living_room_0014/rgb_0169_rgb_left.mp4,NYUv2/test/living_room_0014/rgb_0169_disparity.npz
|
67 |
+
NYUv2/test/bedroom_0003/rgb_0171_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0171_disparity.npz
|
68 |
+
NYUv2/test/bedroom_0003/rgb_0172_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0172_disparity.npz
|
69 |
+
NYUv2/test/bedroom_0003/rgb_0173_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0173_disparity.npz
|
70 |
+
NYUv2/test/bedroom_0003/rgb_0174_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0174_disparity.npz
|
71 |
+
NYUv2/test/bedroom_0003/rgb_0175_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0175_disparity.npz
|
72 |
+
NYUv2/test/bedroom_0003/rgb_0176_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0176_disparity.npz
|
73 |
+
NYUv2/test/bedroom_0005/rgb_0180_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0180_disparity.npz
|
74 |
+
NYUv2/test/bedroom_0005/rgb_0181_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0181_disparity.npz
|
75 |
+
NYUv2/test/bedroom_0005/rgb_0182_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0182_disparity.npz
|
76 |
+
NYUv2/test/bedroom_0006/rgb_0183_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0183_disparity.npz
|
77 |
+
NYUv2/test/bedroom_0006/rgb_0184_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0184_disparity.npz
|
78 |
+
NYUv2/test/bedroom_0006/rgb_0185_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0185_disparity.npz
|
79 |
+
NYUv2/test/bedroom_0006/rgb_0186_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0186_disparity.npz
|
80 |
+
NYUv2/test/bedroom_0006/rgb_0187_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0187_disparity.npz
|
81 |
+
NYUv2/test/bedroom_0006/rgb_0188_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0188_disparity.npz
|
82 |
+
NYUv2/test/bedroom_0007/rgb_0189_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0189_disparity.npz
|
83 |
+
NYUv2/test/bedroom_0007/rgb_0190_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0190_disparity.npz
|
84 |
+
NYUv2/test/bedroom_0007/rgb_0191_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0191_disparity.npz
|
85 |
+
NYUv2/test/bedroom_0007/rgb_0192_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0192_disparity.npz
|
86 |
+
NYUv2/test/bedroom_0007/rgb_0193_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0193_disparity.npz
|
87 |
+
NYUv2/test/kitchen_0002/rgb_0194_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0194_disparity.npz
|
88 |
+
NYUv2/test/kitchen_0002/rgb_0195_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0195_disparity.npz
|
89 |
+
NYUv2/test/kitchen_0002/rgb_0196_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0196_disparity.npz
|
90 |
+
NYUv2/test/kitchen_0002/rgb_0197_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0197_disparity.npz
|
91 |
+
NYUv2/test/kitchen_0002/rgb_0198_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0198_disparity.npz
|
92 |
+
NYUv2/test/kitchen_0002/rgb_0199_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0199_disparity.npz
|
93 |
+
NYUv2/test/kitchen_0002/rgb_0200_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0200_disparity.npz
|
94 |
+
NYUv2/test/kitchen_0002/rgb_0201_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0201_disparity.npz
|
95 |
+
NYUv2/test/kitchen_0002/rgb_0202_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0202_disparity.npz
|
96 |
+
NYUv2/test/living_room_0002/rgb_0207_rgb_left.mp4,NYUv2/test/living_room_0002/rgb_0207_disparity.npz
|
97 |
+
NYUv2/test/living_room_0003/rgb_0208_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0208_disparity.npz
|
98 |
+
NYUv2/test/living_room_0003/rgb_0209_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0209_disparity.npz
|
99 |
+
NYUv2/test/living_room_0003/rgb_0210_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0210_disparity.npz
|
100 |
+
NYUv2/test/living_room_0003/rgb_0211_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0211_disparity.npz
|
101 |
+
NYUv2/test/living_room_0003/rgb_0212_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0212_disparity.npz
|
102 |
+
NYUv2/test/bedroom_0022/rgb_0220_rgb_left.mp4,NYUv2/test/bedroom_0022/rgb_0220_disparity.npz
|
103 |
+
NYUv2/test/bedroom_0024/rgb_0221_rgb_left.mp4,NYUv2/test/bedroom_0024/rgb_0221_disparity.npz
|
104 |
+
NYUv2/test/bedroom_0024/rgb_0222_rgb_left.mp4,NYUv2/test/bedroom_0024/rgb_0222_disparity.npz
|
105 |
+
NYUv2/test/kitchen_0015/rgb_0250_rgb_left.mp4,NYUv2/test/kitchen_0015/rgb_0250_disparity.npz
|
106 |
+
NYUv2/test/living_room_0021/rgb_0264_rgb_left.mp4,NYUv2/test/living_room_0021/rgb_0264_disparity.npz
|
107 |
+
NYUv2/test/office_0016/rgb_0271_rgb_left.mp4,NYUv2/test/office_0016/rgb_0271_disparity.npz
|
108 |
+
NYUv2/test/office_0017/rgb_0272_rgb_left.mp4,NYUv2/test/office_0017/rgb_0272_disparity.npz
|
109 |
+
NYUv2/test/study_room_0001/rgb_0273_rgb_left.mp4,NYUv2/test/study_room_0001/rgb_0273_disparity.npz
|
110 |
+
NYUv2/test/study_room_0006/rgb_0279_rgb_left.mp4,NYUv2/test/study_room_0006/rgb_0279_disparity.npz
|
111 |
+
NYUv2/test/bedroom_0131/rgb_0280_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0280_disparity.npz
|
112 |
+
NYUv2/test/bedroom_0131/rgb_0281_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0281_disparity.npz
|
113 |
+
NYUv2/test/bedroom_0131/rgb_0282_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0282_disparity.npz
|
114 |
+
NYUv2/test/bedroom_0131/rgb_0283_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0283_disparity.npz
|
115 |
+
NYUv2/test/classroom_0001/rgb_0284_rgb_left.mp4,NYUv2/test/classroom_0001/rgb_0284_disparity.npz
|
116 |
+
NYUv2/test/classroom_0001/rgb_0285_rgb_left.mp4,NYUv2/test/classroom_0001/rgb_0285_disparity.npz
|
117 |
+
NYUv2/test/classroom_0007/rgb_0296_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0296_disparity.npz
|
118 |
+
NYUv2/test/classroom_0007/rgb_0297_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0297_disparity.npz
|
119 |
+
NYUv2/test/classroom_0007/rgb_0298_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0298_disparity.npz
|
120 |
+
NYUv2/test/classroom_0008/rgb_0299_rgb_left.mp4,NYUv2/test/classroom_0008/rgb_0299_disparity.npz
|
121 |
+
NYUv2/test/classroom_0008/rgb_0300_rgb_left.mp4,NYUv2/test/classroom_0008/rgb_0300_disparity.npz
|
122 |
+
NYUv2/test/classroom_0009/rgb_0301_rgb_left.mp4,NYUv2/test/classroom_0009/rgb_0301_disparity.npz
|
123 |
+
NYUv2/test/classroom_0009/rgb_0302_rgb_left.mp4,NYUv2/test/classroom_0009/rgb_0302_disparity.npz
|
124 |
+
NYUv2/test/classroom_0014/rgb_0310_rgb_left.mp4,NYUv2/test/classroom_0014/rgb_0310_disparity.npz
|
125 |
+
NYUv2/test/classroom_0014/rgb_0311_rgb_left.mp4,NYUv2/test/classroom_0014/rgb_0311_disparity.npz
|
126 |
+
NYUv2/test/classroom_0015/rgb_0312_rgb_left.mp4,NYUv2/test/classroom_0015/rgb_0312_disparity.npz
|
127 |
+
NYUv2/test/classroom_0017/rgb_0315_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0315_disparity.npz
|
128 |
+
NYUv2/test/classroom_0017/rgb_0316_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0316_disparity.npz
|
129 |
+
NYUv2/test/classroom_0017/rgb_0317_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0317_disparity.npz
|
130 |
+
NYUv2/test/classroom_0023/rgb_0325_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0325_disparity.npz
|
131 |
+
NYUv2/test/classroom_0023/rgb_0326_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0326_disparity.npz
|
132 |
+
NYUv2/test/classroom_0023/rgb_0327_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0327_disparity.npz
|
133 |
+
NYUv2/test/classroom_0023/rgb_0328_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0328_disparity.npz
|
134 |
+
NYUv2/test/classroom_0024/rgb_0329_rgb_left.mp4,NYUv2/test/classroom_0024/rgb_0329_disparity.npz
|
135 |
+
NYUv2/test/classroom_0024/rgb_0330_rgb_left.mp4,NYUv2/test/classroom_0024/rgb_0330_disparity.npz
|
136 |
+
NYUv2/test/classroom_0026/rgb_0331_rgb_left.mp4,NYUv2/test/classroom_0026/rgb_0331_disparity.npz
|
137 |
+
NYUv2/test/classroom_0026/rgb_0332_rgb_left.mp4,NYUv2/test/classroom_0026/rgb_0332_disparity.npz
|
138 |
+
NYUv2/test/computer_lab_0001/rgb_0333_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0333_disparity.npz
|
139 |
+
NYUv2/test/computer_lab_0001/rgb_0334_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0334_disparity.npz
|
140 |
+
NYUv2/test/computer_lab_0001/rgb_0335_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0335_disparity.npz
|
141 |
+
NYUv2/test/foyer_0001/rgb_0351_rgb_left.mp4,NYUv2/test/foyer_0001/rgb_0351_disparity.npz
|
142 |
+
NYUv2/test/foyer_0001/rgb_0352_rgb_left.mp4,NYUv2/test/foyer_0001/rgb_0352_disparity.npz
|
143 |
+
NYUv2/test/home_office_0001/rgb_0355_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0355_disparity.npz
|
144 |
+
NYUv2/test/home_office_0001/rgb_0356_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0356_disparity.npz
|
145 |
+
NYUv2/test/home_office_0001/rgb_0357_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0357_disparity.npz
|
146 |
+
NYUv2/test/home_office_0001/rgb_0358_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0358_disparity.npz
|
147 |
+
NYUv2/test/home_office_0002/rgb_0359_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0359_disparity.npz
|
148 |
+
NYUv2/test/home_office_0002/rgb_0360_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0360_disparity.npz
|
149 |
+
NYUv2/test/home_office_0002/rgb_0361_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0361_disparity.npz
|
150 |
+
NYUv2/test/home_office_0002/rgb_0362_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0362_disparity.npz
|
151 |
+
NYUv2/test/home_office_0003/rgb_0363_rgb_left.mp4,NYUv2/test/home_office_0003/rgb_0363_disparity.npz
|
152 |
+
NYUv2/test/home_office_0003/rgb_0364_rgb_left.mp4,NYUv2/test/home_office_0003/rgb_0364_disparity.npz
|
153 |
+
NYUv2/test/home_office_0009/rgb_0384_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0384_disparity.npz
|
154 |
+
NYUv2/test/home_office_0009/rgb_0385_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0385_disparity.npz
|
155 |
+
NYUv2/test/home_office_0009/rgb_0386_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0386_disparity.npz
|
156 |
+
NYUv2/test/home_office_0010/rgb_0387_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0387_disparity.npz
|
157 |
+
NYUv2/test/home_office_0010/rgb_0388_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0388_disparity.npz
|
158 |
+
NYUv2/test/home_office_0010/rgb_0389_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0389_disparity.npz
|
159 |
+
NYUv2/test/home_office_0010/rgb_0390_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0390_disparity.npz
|
160 |
+
NYUv2/test/home_office_0012/rgb_0395_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0395_disparity.npz
|
161 |
+
NYUv2/test/home_office_0012/rgb_0396_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0396_disparity.npz
|
162 |
+
NYUv2/test/home_office_0012/rgb_0397_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0397_disparity.npz
|
163 |
+
NYUv2/test/office_kitchen_0002/rgb_0411_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0411_disparity.npz
|
164 |
+
NYUv2/test/office_kitchen_0002/rgb_0412_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0412_disparity.npz
|
165 |
+
NYUv2/test/office_kitchen_0002/rgb_0413_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0413_disparity.npz
|
166 |
+
NYUv2/test/office_kitchen_0002/rgb_0414_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0414_disparity.npz
|
167 |
+
NYUv2/test/playroom_0005/rgb_0430_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0430_disparity.npz
|
168 |
+
NYUv2/test/playroom_0005/rgb_0431_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0431_disparity.npz
|
169 |
+
NYUv2/test/playroom_0005/rgb_0432_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0432_disparity.npz
|
170 |
+
NYUv2/test/playroom_0005/rgb_0433_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0433_disparity.npz
|
171 |
+
NYUv2/test/playroom_0005/rgb_0434_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0434_disparity.npz
|
172 |
+
NYUv2/test/playroom_0005/rgb_0435_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0435_disparity.npz
|
173 |
+
NYUv2/test/playroom_0007/rgb_0441_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0441_disparity.npz
|
174 |
+
NYUv2/test/playroom_0007/rgb_0442_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0442_disparity.npz
|
175 |
+
NYUv2/test/playroom_0007/rgb_0443_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0443_disparity.npz
|
176 |
+
NYUv2/test/playroom_0008/rgb_0444_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0444_disparity.npz
|
177 |
+
NYUv2/test/playroom_0008/rgb_0445_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0445_disparity.npz
|
178 |
+
NYUv2/test/playroom_0008/rgb_0446_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0446_disparity.npz
|
179 |
+
NYUv2/test/playroom_0008/rgb_0447_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0447_disparity.npz
|
180 |
+
NYUv2/test/playroom_0008/rgb_0448_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0448_disparity.npz
|
181 |
+
NYUv2/test/reception_room_0003/rgb_0462_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0462_disparity.npz
|
182 |
+
NYUv2/test/reception_room_0003/rgb_0463_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0463_disparity.npz
|
183 |
+
NYUv2/test/reception_room_0003/rgb_0464_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0464_disparity.npz
|
184 |
+
NYUv2/test/reception_room_0003/rgb_0465_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0465_disparity.npz
|
185 |
+
NYUv2/test/reception_room_0003/rgb_0466_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0466_disparity.npz
|
186 |
+
NYUv2/test/study_0001/rgb_0469_rgb_left.mp4,NYUv2/test/study_0001/rgb_0469_disparity.npz
|
187 |
+
NYUv2/test/study_0001/rgb_0470_rgb_left.mp4,NYUv2/test/study_0001/rgb_0470_disparity.npz
|
188 |
+
NYUv2/test/study_0001/rgb_0471_rgb_left.mp4,NYUv2/test/study_0001/rgb_0471_disparity.npz
|
189 |
+
NYUv2/test/study_0001/rgb_0472_rgb_left.mp4,NYUv2/test/study_0001/rgb_0472_disparity.npz
|
190 |
+
NYUv2/test/study_0001/rgb_0473_rgb_left.mp4,NYUv2/test/study_0001/rgb_0473_disparity.npz
|
191 |
+
NYUv2/test/study_0002/rgb_0474_rgb_left.mp4,NYUv2/test/study_0002/rgb_0474_disparity.npz
|
192 |
+
NYUv2/test/study_0002/rgb_0475_rgb_left.mp4,NYUv2/test/study_0002/rgb_0475_disparity.npz
|
193 |
+
NYUv2/test/study_0002/rgb_0476_rgb_left.mp4,NYUv2/test/study_0002/rgb_0476_disparity.npz
|
194 |
+
NYUv2/test/study_0002/rgb_0477_rgb_left.mp4,NYUv2/test/study_0002/rgb_0477_disparity.npz
|
195 |
+
NYUv2/test/bathroom_0058/rgb_0508_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0508_disparity.npz
|
196 |
+
NYUv2/test/bathroom_0058/rgb_0509_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0509_disparity.npz
|
197 |
+
NYUv2/test/bathroom_0058/rgb_0510_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0510_disparity.npz
|
198 |
+
NYUv2/test/bathroom_0060/rgb_0511_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0511_disparity.npz
|
199 |
+
NYUv2/test/bathroom_0060/rgb_0512_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0512_disparity.npz
|
200 |
+
NYUv2/test/bathroom_0060/rgb_0513_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0513_disparity.npz
|
201 |
+
NYUv2/test/bedroom_0133/rgb_0515_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0515_disparity.npz
|
202 |
+
NYUv2/test/bedroom_0133/rgb_0516_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0516_disparity.npz
|
203 |
+
NYUv2/test/bedroom_0133/rgb_0517_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0517_disparity.npz
|
204 |
+
NYUv2/test/bedroom_0133/rgb_0518_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0518_disparity.npz
|
205 |
+
NYUv2/test/bedroom_0133/rgb_0519_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0519_disparity.npz
|
206 |
+
NYUv2/test/bedroom_0134/rgb_0520_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0520_disparity.npz
|
207 |
+
NYUv2/test/bedroom_0134/rgb_0521_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0521_disparity.npz
|
208 |
+
NYUv2/test/bedroom_0134/rgb_0522_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0522_disparity.npz
|
209 |
+
NYUv2/test/bedroom_0135/rgb_0523_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0523_disparity.npz
|
210 |
+
NYUv2/test/bedroom_0135/rgb_0524_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0524_disparity.npz
|
211 |
+
NYUv2/test/bedroom_0135/rgb_0525_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0525_disparity.npz
|
212 |
+
NYUv2/test/bedroom_0135/rgb_0526_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0526_disparity.npz
|
213 |
+
NYUv2/test/bedroom_0137/rgb_0531_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0531_disparity.npz
|
214 |
+
NYUv2/test/bedroom_0137/rgb_0532_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0532_disparity.npz
|
215 |
+
NYUv2/test/bedroom_0137/rgb_0533_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0533_disparity.npz
|
216 |
+
NYUv2/test/bedroom_0139/rgb_0537_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0537_disparity.npz
|
217 |
+
NYUv2/test/bedroom_0139/rgb_0538_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0538_disparity.npz
|
218 |
+
NYUv2/test/bedroom_0139/rgb_0539_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0539_disparity.npz
|
219 |
+
NYUv2/test/dining_room_0038/rgb_0549_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0549_disparity.npz
|
220 |
+
NYUv2/test/dining_room_0038/rgb_0550_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0550_disparity.npz
|
221 |
+
NYUv2/test/dining_room_0038/rgb_0551_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0551_disparity.npz
|
222 |
+
NYUv2/test/home_office_0014/rgb_0555_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0555_disparity.npz
|
223 |
+
NYUv2/test/home_office_0014/rgb_0556_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0556_disparity.npz
|
224 |
+
NYUv2/test/home_office_0014/rgb_0557_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0557_disparity.npz
|
225 |
+
NYUv2/test/home_office_0014/rgb_0558_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0558_disparity.npz
|
226 |
+
NYUv2/test/kitchen_0055/rgb_0559_rgb_left.mp4,NYUv2/test/kitchen_0055/rgb_0559_disparity.npz
|
227 |
+
NYUv2/test/kitchen_0055/rgb_0560_rgb_left.mp4,NYUv2/test/kitchen_0055/rgb_0560_disparity.npz
|
228 |
+
NYUv2/test/kitchen_0056/rgb_0561_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0561_disparity.npz
|
229 |
+
NYUv2/test/kitchen_0056/rgb_0562_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0562_disparity.npz
|
230 |
+
NYUv2/test/kitchen_0056/rgb_0563_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0563_disparity.npz
|
231 |
+
NYUv2/test/kitchen_0056/rgb_0564_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0564_disparity.npz
|
232 |
+
NYUv2/test/kitchen_0057/rgb_0565_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0565_disparity.npz
|
233 |
+
NYUv2/test/kitchen_0057/rgb_0566_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0566_disparity.npz
|
234 |
+
NYUv2/test/kitchen_0057/rgb_0567_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0567_disparity.npz
|
235 |
+
NYUv2/test/kitchen_0057/rgb_0568_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0568_disparity.npz
|
236 |
+
NYUv2/test/kitchen_0058/rgb_0569_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0569_disparity.npz
|
237 |
+
NYUv2/test/kitchen_0058/rgb_0570_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0570_disparity.npz
|
238 |
+
NYUv2/test/kitchen_0058/rgb_0571_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0571_disparity.npz
|
239 |
+
NYUv2/test/living_room_0081/rgb_0579_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0579_disparity.npz
|
240 |
+
NYUv2/test/living_room_0081/rgb_0580_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0580_disparity.npz
|
241 |
+
NYUv2/test/living_room_0081/rgb_0581_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0581_disparity.npz
|
242 |
+
NYUv2/test/living_room_0081/rgb_0582_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0582_disparity.npz
|
243 |
+
NYUv2/test/living_room_0081/rgb_0583_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0583_disparity.npz
|
244 |
+
NYUv2/test/living_room_0084/rgb_0591_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0591_disparity.npz
|
245 |
+
NYUv2/test/living_room_0084/rgb_0592_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0592_disparity.npz
|
246 |
+
NYUv2/test/living_room_0084/rgb_0593_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0593_disparity.npz
|
247 |
+
NYUv2/test/living_room_0084/rgb_0594_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0594_disparity.npz
|
248 |
+
NYUv2/test/living_room_0087/rgb_0603_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0603_disparity.npz
|
249 |
+
NYUv2/test/living_room_0087/rgb_0604_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0604_disparity.npz
|
250 |
+
NYUv2/test/living_room_0087/rgb_0605_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0605_disparity.npz
|
251 |
+
NYUv2/test/living_room_0087/rgb_0606_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0606_disparity.npz
|
252 |
+
NYUv2/test/living_room_0087/rgb_0607_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0607_disparity.npz
|
253 |
+
NYUv2/test/office_0020/rgb_0612_rgb_left.mp4,NYUv2/test/office_0020/rgb_0612_disparity.npz
|
254 |
+
NYUv2/test/office_0020/rgb_0613_rgb_left.mp4,NYUv2/test/office_0020/rgb_0613_disparity.npz
|
255 |
+
NYUv2/test/office_0022/rgb_0617_rgb_left.mp4,NYUv2/test/office_0022/rgb_0617_disparity.npz
|
256 |
+
NYUv2/test/office_0022/rgb_0618_rgb_left.mp4,NYUv2/test/office_0022/rgb_0618_disparity.npz
|
257 |
+
NYUv2/test/office_0022/rgb_0619_rgb_left.mp4,NYUv2/test/office_0022/rgb_0619_disparity.npz
|
258 |
+
NYUv2/test/office_0022/rgb_0620_rgb_left.mp4,NYUv2/test/office_0022/rgb_0620_disparity.npz
|
259 |
+
NYUv2/test/office_0022/rgb_0621_rgb_left.mp4,NYUv2/test/office_0022/rgb_0621_disparity.npz
|
260 |
+
NYUv2/test/office_0027/rgb_0633_rgb_left.mp4,NYUv2/test/office_0027/rgb_0633_disparity.npz
|
261 |
+
NYUv2/test/office_0027/rgb_0634_rgb_left.mp4,NYUv2/test/office_0027/rgb_0634_disparity.npz
|
262 |
+
NYUv2/test/office_0027/rgb_0635_rgb_left.mp4,NYUv2/test/office_0027/rgb_0635_disparity.npz
|
263 |
+
NYUv2/test/office_0027/rgb_0636_rgb_left.mp4,NYUv2/test/office_0027/rgb_0636_disparity.npz
|
264 |
+
NYUv2/test/office_0027/rgb_0637_rgb_left.mp4,NYUv2/test/office_0027/rgb_0637_disparity.npz
|
265 |
+
NYUv2/test/office_0027/rgb_0638_rgb_left.mp4,NYUv2/test/office_0027/rgb_0638_disparity.npz
|
266 |
+
NYUv2/test/study_0007/rgb_0644_rgb_left.mp4,NYUv2/test/study_0007/rgb_0644_disparity.npz
|
267 |
+
NYUv2/test/study_0007/rgb_0645_rgb_left.mp4,NYUv2/test/study_0007/rgb_0645_disparity.npz
|
268 |
+
NYUv2/test/bathroom_0008/rgb_0650_rgb_left.mp4,NYUv2/test/bathroom_0008/rgb_0650_disparity.npz
|
269 |
+
NYUv2/test/bathroom_0009/rgb_0651_rgb_left.mp4,NYUv2/test/bathroom_0009/rgb_0651_disparity.npz
|
270 |
+
NYUv2/test/bathroom_0012/rgb_0656_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0656_disparity.npz
|
271 |
+
NYUv2/test/bathroom_0012/rgb_0657_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0657_disparity.npz
|
272 |
+
NYUv2/test/bathroom_0012/rgb_0658_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0658_disparity.npz
|
273 |
+
NYUv2/test/bathroom_0015/rgb_0663_rgb_left.mp4,NYUv2/test/bathroom_0015/rgb_0663_disparity.npz
|
274 |
+
NYUv2/test/bathroom_0015/rgb_0664_rgb_left.mp4,NYUv2/test/bathroom_0015/rgb_0664_disparity.npz
|
275 |
+
NYUv2/test/bathroom_0017/rgb_0668_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0668_disparity.npz
|
276 |
+
NYUv2/test/bathroom_0017/rgb_0669_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0669_disparity.npz
|
277 |
+
NYUv2/test/bathroom_0017/rgb_0670_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0670_disparity.npz
|
278 |
+
NYUv2/test/bathroom_0018/rgb_0671_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0671_disparity.npz
|
279 |
+
NYUv2/test/bathroom_0018/rgb_0672_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0672_disparity.npz
|
280 |
+
NYUv2/test/bathroom_0018/rgb_0673_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0673_disparity.npz
|
281 |
+
NYUv2/test/bathroom_0020/rgb_0676_rgb_left.mp4,NYUv2/test/bathroom_0020/rgb_0676_disparity.npz
|
282 |
+
NYUv2/test/bathroom_0020/rgb_0677_rgb_left.mp4,NYUv2/test/bathroom_0020/rgb_0677_disparity.npz
|
283 |
+
NYUv2/test/bathroom_0021/rgb_0678_rgb_left.mp4,NYUv2/test/bathroom_0021/rgb_0678_disparity.npz
|
284 |
+
NYUv2/test/bathroom_0021/rgb_0679_rgb_left.mp4,NYUv2/test/bathroom_0021/rgb_0679_disparity.npz
|
285 |
+
NYUv2/test/bathroom_0022/rgb_0680_rgb_left.mp4,NYUv2/test/bathroom_0022/rgb_0680_disparity.npz
|
286 |
+
NYUv2/test/bathroom_0022/rgb_0681_rgb_left.mp4,NYUv2/test/bathroom_0022/rgb_0681_disparity.npz
|
287 |
+
NYUv2/test/bathroom_0025/rgb_0686_rgb_left.mp4,NYUv2/test/bathroom_0025/rgb_0686_disparity.npz
|
288 |
+
NYUv2/test/bathroom_0025/rgb_0687_rgb_left.mp4,NYUv2/test/bathroom_0025/rgb_0687_disparity.npz
|
289 |
+
NYUv2/test/bathroom_0026/rgb_0688_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0688_disparity.npz
|
290 |
+
NYUv2/test/bathroom_0026/rgb_0689_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0689_disparity.npz
|
291 |
+
NYUv2/test/bathroom_0026/rgb_0690_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0690_disparity.npz
|
292 |
+
NYUv2/test/bathroom_0029/rgb_0693_rgb_left.mp4,NYUv2/test/bathroom_0029/rgb_0693_disparity.npz
|
293 |
+
NYUv2/test/bathroom_0029/rgb_0694_rgb_left.mp4,NYUv2/test/bathroom_0029/rgb_0694_disparity.npz
|
294 |
+
NYUv2/test/bathroom_0031/rgb_0697_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0697_disparity.npz
|
295 |
+
NYUv2/test/bathroom_0031/rgb_0698_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0698_disparity.npz
|
296 |
+
NYUv2/test/bathroom_0031/rgb_0699_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0699_disparity.npz
|
297 |
+
NYUv2/test/bathroom_0036/rgb_0706_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0706_disparity.npz
|
298 |
+
NYUv2/test/bathroom_0036/rgb_0707_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0707_disparity.npz
|
299 |
+
NYUv2/test/bathroom_0036/rgb_0708_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0708_disparity.npz
|
300 |
+
NYUv2/test/bathroom_0037/rgb_0709_rgb_left.mp4,NYUv2/test/bathroom_0037/rgb_0709_disparity.npz
|
301 |
+
NYUv2/test/bathroom_0037/rgb_0710_rgb_left.mp4,NYUv2/test/bathroom_0037/rgb_0710_disparity.npz
|
302 |
+
NYUv2/test/bathroom_0038/rgb_0711_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0711_disparity.npz
|
303 |
+
NYUv2/test/bathroom_0038/rgb_0712_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0712_disparity.npz
|
304 |
+
NYUv2/test/bathroom_0038/rgb_0713_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0713_disparity.npz
|
305 |
+
NYUv2/test/bathroom_0040/rgb_0717_rgb_left.mp4,NYUv2/test/bathroom_0040/rgb_0717_disparity.npz
|
306 |
+
NYUv2/test/bathroom_0040/rgb_0718_rgb_left.mp4,NYUv2/test/bathroom_0040/rgb_0718_disparity.npz
|
307 |
+
NYUv2/test/bathroom_0043/rgb_0724_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0724_disparity.npz
|
308 |
+
NYUv2/test/bathroom_0043/rgb_0725_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0725_disparity.npz
|
309 |
+
NYUv2/test/bathroom_0043/rgb_0726_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0726_disparity.npz
|
310 |
+
NYUv2/test/bathroom_0044/rgb_0727_rgb_left.mp4,NYUv2/test/bathroom_0044/rgb_0727_disparity.npz
|
311 |
+
NYUv2/test/bathroom_0044/rgb_0728_rgb_left.mp4,NYUv2/test/bathroom_0044/rgb_0728_disparity.npz
|
312 |
+
NYUv2/test/bathroom_0046/rgb_0731_rgb_left.mp4,NYUv2/test/bathroom_0046/rgb_0731_disparity.npz
|
313 |
+
NYUv2/test/bathroom_0046/rgb_0732_rgb_left.mp4,NYUv2/test/bathroom_0046/rgb_0732_disparity.npz
|
314 |
+
NYUv2/test/bathroom_0047/rgb_0733_rgb_left.mp4,NYUv2/test/bathroom_0047/rgb_0733_disparity.npz
|
315 |
+
NYUv2/test/bathroom_0047/rgb_0734_rgb_left.mp4,NYUv2/test/bathroom_0047/rgb_0734_disparity.npz
|
316 |
+
NYUv2/test/bathroom_0052/rgb_0743_rgb_left.mp4,NYUv2/test/bathroom_0052/rgb_0743_disparity.npz
|
317 |
+
NYUv2/test/bathroom_0052/rgb_0744_rgb_left.mp4,NYUv2/test/bathroom_0052/rgb_0744_disparity.npz
|
318 |
+
NYUv2/test/kitchen_0021/rgb_0759_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0759_disparity.npz
|
319 |
+
NYUv2/test/kitchen_0021/rgb_0760_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0760_disparity.npz
|
320 |
+
NYUv2/test/kitchen_0021/rgb_0761_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0761_disparity.npz
|
321 |
+
NYUv2/test/kitchen_0022/rgb_0762_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0762_disparity.npz
|
322 |
+
NYUv2/test/kitchen_0022/rgb_0763_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0763_disparity.npz
|
323 |
+
NYUv2/test/kitchen_0022/rgb_0764_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0764_disparity.npz
|
324 |
+
NYUv2/test/kitchen_0022/rgb_0765_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0765_disparity.npz
|
325 |
+
NYUv2/test/kitchen_0022/rgb_0766_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0766_disparity.npz
|
326 |
+
NYUv2/test/kitchen_0023/rgb_0767_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0767_disparity.npz
|
327 |
+
NYUv2/test/kitchen_0023/rgb_0768_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0768_disparity.npz
|
328 |
+
NYUv2/test/kitchen_0023/rgb_0769_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0769_disparity.npz
|
329 |
+
NYUv2/test/kitchen_0023/rgb_0770_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0770_disparity.npz
|
330 |
+
NYUv2/test/kitchen_0023/rgb_0771_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0771_disparity.npz
|
331 |
+
NYUv2/test/kitchen_0024/rgb_0772_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0772_disparity.npz
|
332 |
+
NYUv2/test/kitchen_0024/rgb_0773_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0773_disparity.npz
|
333 |
+
NYUv2/test/kitchen_0024/rgb_0774_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0774_disparity.npz
|
334 |
+
NYUv2/test/kitchen_0024/rgb_0775_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0775_disparity.npz
|
335 |
+
NYUv2/test/kitchen_0024/rgb_0776_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0776_disparity.npz
|
336 |
+
NYUv2/test/kitchen_0025/rgb_0777_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0777_disparity.npz
|
337 |
+
NYUv2/test/kitchen_0025/rgb_0778_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0778_disparity.npz
|
338 |
+
NYUv2/test/kitchen_0025/rgb_0779_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0779_disparity.npz
|
339 |
+
NYUv2/test/kitchen_0026/rgb_0780_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0780_disparity.npz
|
340 |
+
NYUv2/test/kitchen_0026/rgb_0781_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0781_disparity.npz
|
341 |
+
NYUv2/test/kitchen_0026/rgb_0782_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0782_disparity.npz
|
342 |
+
NYUv2/test/kitchen_0027/rgb_0783_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0783_disparity.npz
|
343 |
+
NYUv2/test/kitchen_0027/rgb_0784_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0784_disparity.npz
|
344 |
+
NYUv2/test/kitchen_0027/rgb_0785_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0785_disparity.npz
|
345 |
+
NYUv2/test/kitchen_0027/rgb_0786_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0786_disparity.npz
|
346 |
+
NYUv2/test/kitchen_0027/rgb_0787_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0787_disparity.npz
|
347 |
+
NYUv2/test/kitchen_0030/rgb_0800_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0800_disparity.npz
|
348 |
+
NYUv2/test/kitchen_0030/rgb_0801_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0801_disparity.npz
|
349 |
+
NYUv2/test/kitchen_0030/rgb_0802_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0802_disparity.npz
|
350 |
+
NYUv2/test/kitchen_0030/rgb_0803_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0803_disparity.npz
|
351 |
+
NYUv2/test/kitchen_0030/rgb_0804_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0804_disparity.npz
|
352 |
+
NYUv2/test/kitchen_0032/rgb_0810_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0810_disparity.npz
|
353 |
+
NYUv2/test/kitchen_0032/rgb_0811_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0811_disparity.npz
|
354 |
+
NYUv2/test/kitchen_0032/rgb_0812_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0812_disparity.npz
|
355 |
+
NYUv2/test/kitchen_0032/rgb_0813_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0813_disparity.npz
|
356 |
+
NYUv2/test/kitchen_0032/rgb_0814_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0814_disparity.npz
|
357 |
+
NYUv2/test/kitchen_0034/rgb_0821_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0821_disparity.npz
|
358 |
+
NYUv2/test/kitchen_0034/rgb_0822_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0822_disparity.npz
|
359 |
+
NYUv2/test/kitchen_0034/rgb_0823_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0823_disparity.npz
|
360 |
+
NYUv2/test/kitchen_0038/rgb_0833_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0833_disparity.npz
|
361 |
+
NYUv2/test/kitchen_0038/rgb_0834_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0834_disparity.npz
|
362 |
+
NYUv2/test/kitchen_0038/rgb_0835_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0835_disparity.npz
|
363 |
+
NYUv2/test/kitchen_0038/rgb_0836_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0836_disparity.npz
|
364 |
+
NYUv2/test/kitchen_0039/rgb_0837_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0837_disparity.npz
|
365 |
+
NYUv2/test/kitchen_0039/rgb_0838_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0838_disparity.npz
|
366 |
+
NYUv2/test/kitchen_0039/rgb_0839_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0839_disparity.npz
|
367 |
+
NYUv2/test/kitchen_0039/rgb_0840_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0840_disparity.npz
|
368 |
+
NYUv2/test/kitchen_0039/rgb_0841_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0841_disparity.npz
|
369 |
+
NYUv2/test/kitchen_0039/rgb_0842_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0842_disparity.npz
|
370 |
+
NYUv2/test/kitchen_0040/rgb_0843_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0843_disparity.npz
|
371 |
+
NYUv2/test/kitchen_0040/rgb_0844_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0844_disparity.npz
|
372 |
+
NYUv2/test/kitchen_0040/rgb_0845_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0845_disparity.npz
|
373 |
+
NYUv2/test/kitchen_0040/rgb_0846_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0846_disparity.npz
|
374 |
+
NYUv2/test/kitchen_0042/rgb_0850_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0850_disparity.npz
|
375 |
+
NYUv2/test/kitchen_0042/rgb_0851_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0851_disparity.npz
|
376 |
+
NYUv2/test/kitchen_0042/rgb_0852_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0852_disparity.npz
|
377 |
+
NYUv2/test/kitchen_0044/rgb_0857_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0857_disparity.npz
|
378 |
+
NYUv2/test/kitchen_0044/rgb_0858_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0858_disparity.npz
|
379 |
+
NYUv2/test/kitchen_0044/rgb_0859_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0859_disparity.npz
|
380 |
+
NYUv2/test/kitchen_0044/rgb_0860_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0860_disparity.npz
|
381 |
+
NYUv2/test/kitchen_0044/rgb_0861_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0861_disparity.npz
|
382 |
+
NYUv2/test/kitchen_0044/rgb_0862_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0862_disparity.npz
|
383 |
+
NYUv2/test/kitchen_0046/rgb_0869_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0869_disparity.npz
|
384 |
+
NYUv2/test/kitchen_0046/rgb_0870_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0870_disparity.npz
|
385 |
+
NYUv2/test/kitchen_0046/rgb_0871_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0871_disparity.npz
|
386 |
+
NYUv2/test/kitchen_0054/rgb_0906_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0906_disparity.npz
|
387 |
+
NYUv2/test/kitchen_0054/rgb_0907_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0907_disparity.npz
|
388 |
+
NYUv2/test/kitchen_0054/rgb_0908_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0908_disparity.npz
|
389 |
+
NYUv2/test/bedroom_0027/rgb_0917_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0917_disparity.npz
|
390 |
+
NYUv2/test/bedroom_0027/rgb_0918_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0918_disparity.npz
|
391 |
+
NYUv2/test/bedroom_0027/rgb_0919_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0919_disparity.npz
|
392 |
+
NYUv2/test/bedroom_0030/rgb_0926_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0926_disparity.npz
|
393 |
+
NYUv2/test/bedroom_0030/rgb_0927_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0927_disparity.npz
|
394 |
+
NYUv2/test/bedroom_0030/rgb_0928_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0928_disparity.npz
|
395 |
+
NYUv2/test/bedroom_0032/rgb_0932_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0932_disparity.npz
|
396 |
+
NYUv2/test/bedroom_0032/rgb_0933_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0933_disparity.npz
|
397 |
+
NYUv2/test/bedroom_0032/rgb_0934_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0934_disparity.npz
|
398 |
+
NYUv2/test/bedroom_0032/rgb_0935_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0935_disparity.npz
|
399 |
+
NYUv2/test/bedroom_0037/rgb_0945_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0945_disparity.npz
|
400 |
+
NYUv2/test/bedroom_0037/rgb_0946_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0946_disparity.npz
|
401 |
+
NYUv2/test/bedroom_0037/rgb_0947_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0947_disparity.npz
|
402 |
+
NYUv2/test/bedroom_0043/rgb_0959_rgb_left.mp4,NYUv2/test/bedroom_0043/rgb_0959_disparity.npz
|
403 |
+
NYUv2/test/bedroom_0043/rgb_0960_rgb_left.mp4,NYUv2/test/bedroom_0043/rgb_0960_disparity.npz
|
404 |
+
NYUv2/test/bedroom_0044/rgb_0961_rgb_left.mp4,NYUv2/test/bedroom_0044/rgb_0961_disparity.npz
|
405 |
+
NYUv2/test/bedroom_0044/rgb_0962_rgb_left.mp4,NYUv2/test/bedroom_0044/rgb_0962_disparity.npz
|
406 |
+
NYUv2/test/bedroom_0046/rgb_0965_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0965_disparity.npz
|
407 |
+
NYUv2/test/bedroom_0046/rgb_0966_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0966_disparity.npz
|
408 |
+
NYUv2/test/bedroom_0046/rgb_0967_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0967_disparity.npz
|
409 |
+
NYUv2/test/bedroom_0048/rgb_0970_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0970_disparity.npz
|
410 |
+
NYUv2/test/bedroom_0048/rgb_0971_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0971_disparity.npz
|
411 |
+
NYUv2/test/bedroom_0048/rgb_0972_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0972_disparity.npz
|
412 |
+
NYUv2/test/bedroom_0048/rgb_0973_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0973_disparity.npz
|
413 |
+
NYUv2/test/bedroom_0048/rgb_0974_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0974_disparity.npz
|
414 |
+
NYUv2/test/bedroom_0049/rgb_0975_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0975_disparity.npz
|
415 |
+
NYUv2/test/bedroom_0049/rgb_0976_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0976_disparity.npz
|
416 |
+
NYUv2/test/bedroom_0049/rgb_0977_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0977_disparity.npz
|
417 |
+
NYUv2/test/bedroom_0054/rgb_0991_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0991_disparity.npz
|
418 |
+
NYUv2/test/bedroom_0054/rgb_0992_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0992_disparity.npz
|
419 |
+
NYUv2/test/bedroom_0054/rgb_0993_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0993_disparity.npz
|
420 |
+
NYUv2/test/bedroom_0055/rgb_0994_rgb_left.mp4,NYUv2/test/bedroom_0055/rgb_0994_disparity.npz
|
421 |
+
NYUv2/test/bedroom_0055/rgb_0995_rgb_left.mp4,NYUv2/test/bedroom_0055/rgb_0995_disparity.npz
|
422 |
+
NYUv2/test/bedroom_0058/rgb_1001_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1001_disparity.npz
|
423 |
+
NYUv2/test/bedroom_0058/rgb_1002_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1002_disparity.npz
|
424 |
+
NYUv2/test/bedroom_0058/rgb_1003_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1003_disparity.npz
|
425 |
+
NYUv2/test/bedroom_0058/rgb_1004_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1004_disparity.npz
|
426 |
+
NYUv2/test/bedroom_0061/rgb_1010_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1010_disparity.npz
|
427 |
+
NYUv2/test/bedroom_0061/rgb_1011_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1011_disparity.npz
|
428 |
+
NYUv2/test/bedroom_0061/rgb_1012_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1012_disparity.npz
|
429 |
+
NYUv2/test/bedroom_0064/rgb_1021_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1021_disparity.npz
|
430 |
+
NYUv2/test/bedroom_0064/rgb_1022_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1022_disparity.npz
|
431 |
+
NYUv2/test/bedroom_0064/rgb_1023_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1023_disparity.npz
|
432 |
+
NYUv2/test/bedroom_0068/rgb_1032_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1032_disparity.npz
|
433 |
+
NYUv2/test/bedroom_0068/rgb_1033_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1033_disparity.npz
|
434 |
+
NYUv2/test/bedroom_0068/rgb_1034_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1034_disparity.npz
|
435 |
+
NYUv2/test/bedroom_0070/rgb_1038_rgb_left.mp4,NYUv2/test/bedroom_0070/rgb_1038_disparity.npz
|
436 |
+
NYUv2/test/bedroom_0070/rgb_1039_rgb_left.mp4,NYUv2/test/bedroom_0070/rgb_1039_disparity.npz
|
437 |
+
NYUv2/test/bedroom_0073/rgb_1048_rgb_left.mp4,NYUv2/test/bedroom_0073/rgb_1048_disparity.npz
|
438 |
+
NYUv2/test/bedroom_0073/rgb_1049_rgb_left.mp4,NYUv2/test/bedroom_0073/rgb_1049_disparity.npz
|
439 |
+
NYUv2/test/bedroom_0075/rgb_1052_rgb_left.mp4,NYUv2/test/bedroom_0075/rgb_1052_disparity.npz
|
440 |
+
NYUv2/test/bedroom_0075/rgb_1053_rgb_left.mp4,NYUv2/test/bedroom_0075/rgb_1053_disparity.npz
|
441 |
+
NYUv2/test/bedroom_0077/rgb_1057_rgb_left.mp4,NYUv2/test/bedroom_0077/rgb_1057_disparity.npz
|
442 |
+
NYUv2/test/bedroom_0077/rgb_1058_rgb_left.mp4,NYUv2/test/bedroom_0077/rgb_1058_disparity.npz
|
443 |
+
NYUv2/test/bedroom_0083/rgb_1075_rgb_left.mp4,NYUv2/test/bedroom_0083/rgb_1075_disparity.npz
|
444 |
+
NYUv2/test/bedroom_0083/rgb_1076_rgb_left.mp4,NYUv2/test/bedroom_0083/rgb_1076_disparity.npz
|
445 |
+
NYUv2/test/bedroom_0084/rgb_1077_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1077_disparity.npz
|
446 |
+
NYUv2/test/bedroom_0084/rgb_1078_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1078_disparity.npz
|
447 |
+
NYUv2/test/bedroom_0084/rgb_1079_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1079_disparity.npz
|
448 |
+
NYUv2/test/bedroom_0084/rgb_1080_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1080_disparity.npz
|
449 |
+
NYUv2/test/bedroom_0085/rgb_1081_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1081_disparity.npz
|
450 |
+
NYUv2/test/bedroom_0085/rgb_1082_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1082_disparity.npz
|
451 |
+
NYUv2/test/bedroom_0085/rgb_1083_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1083_disparity.npz
|
452 |
+
NYUv2/test/bedroom_0085/rgb_1084_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1084_disparity.npz
|
453 |
+
NYUv2/test/bedroom_0087/rgb_1088_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1088_disparity.npz
|
454 |
+
NYUv2/test/bedroom_0087/rgb_1089_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1089_disparity.npz
|
455 |
+
NYUv2/test/bedroom_0087/rgb_1090_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1090_disparity.npz
|
456 |
+
NYUv2/test/bedroom_0088/rgb_1091_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1091_disparity.npz
|
457 |
+
NYUv2/test/bedroom_0088/rgb_1092_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1092_disparity.npz
|
458 |
+
NYUv2/test/bedroom_0088/rgb_1093_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1093_disparity.npz
|
459 |
+
NYUv2/test/bedroom_0089/rgb_1094_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1094_disparity.npz
|
460 |
+
NYUv2/test/bedroom_0089/rgb_1095_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1095_disparity.npz
|
461 |
+
NYUv2/test/bedroom_0089/rgb_1096_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1096_disparity.npz
|
462 |
+
NYUv2/test/bedroom_0091/rgb_1098_rgb_left.mp4,NYUv2/test/bedroom_0091/rgb_1098_disparity.npz
|
463 |
+
NYUv2/test/bedroom_0091/rgb_1099_rgb_left.mp4,NYUv2/test/bedroom_0091/rgb_1099_disparity.npz
|
464 |
+
NYUv2/test/bedroom_0092/rgb_1100_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1100_disparity.npz
|
465 |
+
NYUv2/test/bedroom_0092/rgb_1101_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1101_disparity.npz
|
466 |
+
NYUv2/test/bedroom_0092/rgb_1102_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1102_disparity.npz
|
467 |
+
NYUv2/test/bedroom_0093/rgb_1103_rgb_left.mp4,NYUv2/test/bedroom_0093/rgb_1103_disparity.npz
|
468 |
+
NYUv2/test/bedroom_0093/rgb_1104_rgb_left.mp4,NYUv2/test/bedroom_0093/rgb_1104_disparity.npz
|
469 |
+
NYUv2/test/bedroom_0095/rgb_1106_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1106_disparity.npz
|
470 |
+
NYUv2/test/bedroom_0095/rgb_1107_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1107_disparity.npz
|
471 |
+
NYUv2/test/bedroom_0095/rgb_1108_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1108_disparity.npz
|
472 |
+
NYUv2/test/bedroom_0095/rgb_1109_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1109_disparity.npz
|
473 |
+
NYUv2/test/bedroom_0099/rgb_1117_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1117_disparity.npz
|
474 |
+
NYUv2/test/bedroom_0099/rgb_1118_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1118_disparity.npz
|
475 |
+
NYUv2/test/bedroom_0099/rgb_1119_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1119_disparity.npz
|
476 |
+
NYUv2/test/bedroom_0101/rgb_1123_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1123_disparity.npz
|
477 |
+
NYUv2/test/bedroom_0101/rgb_1124_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1124_disparity.npz
|
478 |
+
NYUv2/test/bedroom_0101/rgb_1125_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1125_disparity.npz
|
479 |
+
NYUv2/test/bedroom_0101/rgb_1126_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1126_disparity.npz
|
480 |
+
NYUv2/test/bedroom_0102/rgb_1127_rgb_left.mp4,NYUv2/test/bedroom_0102/rgb_1127_disparity.npz
|
481 |
+
NYUv2/test/bedroom_0102/rgb_1128_rgb_left.mp4,NYUv2/test/bedroom_0102/rgb_1128_disparity.npz
|
482 |
+
NYUv2/test/bedroom_0103/rgb_1129_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1129_disparity.npz
|
483 |
+
NYUv2/test/bedroom_0103/rgb_1130_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1130_disparity.npz
|
484 |
+
NYUv2/test/bedroom_0103/rgb_1131_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1131_disparity.npz
|
485 |
+
NYUv2/test/bedroom_0105/rgb_1135_rgb_left.mp4,NYUv2/test/bedroom_0105/rgb_1135_disparity.npz
|
486 |
+
NYUv2/test/bedroom_0105/rgb_1136_rgb_left.mp4,NYUv2/test/bedroom_0105/rgb_1136_disparity.npz
|
487 |
+
NYUv2/test/bedroom_0108/rgb_1144_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1144_disparity.npz
|
488 |
+
NYUv2/test/bedroom_0108/rgb_1145_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1145_disparity.npz
|
489 |
+
NYUv2/test/bedroom_0108/rgb_1146_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1146_disparity.npz
|
490 |
+
NYUv2/test/bedroom_0109/rgb_1147_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1147_disparity.npz
|
491 |
+
NYUv2/test/bedroom_0109/rgb_1148_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1148_disparity.npz
|
492 |
+
NYUv2/test/bedroom_0109/rgb_1149_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1149_disparity.npz
|
493 |
+
NYUv2/test/bedroom_0110/rgb_1150_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1150_disparity.npz
|
494 |
+
NYUv2/test/bedroom_0110/rgb_1151_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1151_disparity.npz
|
495 |
+
NYUv2/test/bedroom_0110/rgb_1152_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1152_disparity.npz
|
496 |
+
NYUv2/test/bedroom_0111/rgb_1153_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1153_disparity.npz
|
497 |
+
NYUv2/test/bedroom_0111/rgb_1154_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1154_disparity.npz
|
498 |
+
NYUv2/test/bedroom_0111/rgb_1155_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1155_disparity.npz
|
499 |
+
NYUv2/test/bedroom_0112/rgb_1156_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1156_disparity.npz
|
500 |
+
NYUv2/test/bedroom_0112/rgb_1157_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1157_disparity.npz
|
501 |
+
NYUv2/test/bedroom_0112/rgb_1158_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1158_disparity.npz
|
502 |
+
NYUv2/test/bedroom_0114/rgb_1162_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1162_disparity.npz
|
503 |
+
NYUv2/test/bedroom_0114/rgb_1163_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1163_disparity.npz
|
504 |
+
NYUv2/test/bedroom_0114/rgb_1164_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1164_disparity.npz
|
505 |
+
NYUv2/test/bedroom_0115/rgb_1165_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1165_disparity.npz
|
506 |
+
NYUv2/test/bedroom_0115/rgb_1166_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1166_disparity.npz
|
507 |
+
NYUv2/test/bedroom_0115/rgb_1167_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1167_disparity.npz
|
508 |
+
NYUv2/test/bedroom_0117/rgb_1170_rgb_left.mp4,NYUv2/test/bedroom_0117/rgb_1170_disparity.npz
|
509 |
+
NYUv2/test/bedroom_0117/rgb_1171_rgb_left.mp4,NYUv2/test/bedroom_0117/rgb_1171_disparity.npz
|
510 |
+
NYUv2/test/bedroom_0119/rgb_1174_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1174_disparity.npz
|
511 |
+
NYUv2/test/bedroom_0119/rgb_1175_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1175_disparity.npz
|
512 |
+
NYUv2/test/bedroom_0119/rgb_1176_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1176_disparity.npz
|
513 |
+
NYUv2/test/bedroom_0121/rgb_1179_rgb_left.mp4,NYUv2/test/bedroom_0121/rgb_1179_disparity.npz
|
514 |
+
NYUv2/test/bedroom_0121/rgb_1180_rgb_left.mp4,NYUv2/test/bedroom_0121/rgb_1180_disparity.npz
|
515 |
+
NYUv2/test/bedroom_0122/rgb_1181_rgb_left.mp4,NYUv2/test/bedroom_0122/rgb_1181_disparity.npz
|
516 |
+
NYUv2/test/bedroom_0122/rgb_1182_rgb_left.mp4,NYUv2/test/bedroom_0122/rgb_1182_disparity.npz
|
517 |
+
NYUv2/test/bedroom_0123/rgb_1183_rgb_left.mp4,NYUv2/test/bedroom_0123/rgb_1183_disparity.npz
|
518 |
+
NYUv2/test/bedroom_0123/rgb_1184_rgb_left.mp4,NYUv2/test/bedroom_0123/rgb_1184_disparity.npz
|
519 |
+
NYUv2/test/bedroom_0127/rgb_1192_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1192_disparity.npz
|
520 |
+
NYUv2/test/bedroom_0127/rgb_1193_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1193_disparity.npz
|
521 |
+
NYUv2/test/bedroom_0127/rgb_1194_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1194_disparity.npz
|
522 |
+
NYUv2/test/bedroom_0128/rgb_1195_rgb_left.mp4,NYUv2/test/bedroom_0128/rgb_1195_disparity.npz
|
523 |
+
NYUv2/test/bedroom_0128/rgb_1196_rgb_left.mp4,NYUv2/test/bedroom_0128/rgb_1196_disparity.npz
|
524 |
+
NYUv2/test/living_room_0025/rgb_1201_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1201_disparity.npz
|
525 |
+
NYUv2/test/living_room_0025/rgb_1202_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1202_disparity.npz
|
526 |
+
NYUv2/test/living_room_0025/rgb_1203_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1203_disparity.npz
|
527 |
+
NYUv2/test/living_room_0026/rgb_1204_rgb_left.mp4,NYUv2/test/living_room_0026/rgb_1204_disparity.npz
|
528 |
+
NYUv2/test/living_room_0026/rgb_1205_rgb_left.mp4,NYUv2/test/living_room_0026/rgb_1205_disparity.npz
|
529 |
+
NYUv2/test/living_room_0027/rgb_1206_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1206_disparity.npz
|
530 |
+
NYUv2/test/living_room_0027/rgb_1207_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1207_disparity.npz
|
531 |
+
NYUv2/test/living_room_0027/rgb_1208_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1208_disparity.npz
|
532 |
+
NYUv2/test/living_room_0028/rgb_1209_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1209_disparity.npz
|
533 |
+
NYUv2/test/living_room_0028/rgb_1210_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1210_disparity.npz
|
534 |
+
NYUv2/test/living_room_0028/rgb_1211_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1211_disparity.npz
|
535 |
+
NYUv2/test/living_room_0028/rgb_1212_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1212_disparity.npz
|
536 |
+
NYUv2/test/living_room_0030/rgb_1216_rgb_left.mp4,NYUv2/test/living_room_0030/rgb_1216_disparity.npz
|
537 |
+
NYUv2/test/living_room_0030/rgb_1217_rgb_left.mp4,NYUv2/test/living_room_0030/rgb_1217_disparity.npz
|
538 |
+
NYUv2/test/living_room_0031/rgb_1218_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1218_disparity.npz
|
539 |
+
NYUv2/test/living_room_0031/rgb_1219_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1219_disparity.npz
|
540 |
+
NYUv2/test/living_room_0031/rgb_1220_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1220_disparity.npz
|
541 |
+
NYUv2/test/living_room_0034/rgb_1226_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1226_disparity.npz
|
542 |
+
NYUv2/test/living_room_0034/rgb_1227_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1227_disparity.npz
|
543 |
+
NYUv2/test/living_room_0034/rgb_1228_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1228_disparity.npz
|
544 |
+
NYUv2/test/living_room_0034/rgb_1229_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1229_disparity.npz
|
545 |
+
NYUv2/test/living_room_0034/rgb_1230_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1230_disparity.npz
|
546 |
+
NYUv2/test/living_room_0036/rgb_1233_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1233_disparity.npz
|
547 |
+
NYUv2/test/living_room_0036/rgb_1234_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1234_disparity.npz
|
548 |
+
NYUv2/test/living_room_0036/rgb_1235_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1235_disparity.npz
|
549 |
+
NYUv2/test/living_room_0041/rgb_1247_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1247_disparity.npz
|
550 |
+
NYUv2/test/living_room_0041/rgb_1248_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1248_disparity.npz
|
551 |
+
NYUv2/test/living_room_0041/rgb_1249_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1249_disparity.npz
|
552 |
+
NYUv2/test/living_room_0041/rgb_1250_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1250_disparity.npz
|
553 |
+
NYUv2/test/living_room_0043/rgb_1254_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1254_disparity.npz
|
554 |
+
NYUv2/test/living_room_0043/rgb_1255_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1255_disparity.npz
|
555 |
+
NYUv2/test/living_room_0043/rgb_1256_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1256_disparity.npz
|
556 |
+
NYUv2/test/living_room_0043/rgb_1257_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1257_disparity.npz
|
557 |
+
NYUv2/test/living_room_0044/rgb_1258_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1258_disparity.npz
|
558 |
+
NYUv2/test/living_room_0044/rgb_1259_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1259_disparity.npz
|
559 |
+
NYUv2/test/living_room_0044/rgb_1260_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1260_disparity.npz
|
560 |
+
NYUv2/test/living_room_0044/rgb_1261_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1261_disparity.npz
|
561 |
+
NYUv2/test/living_room_0045/rgb_1262_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1262_disparity.npz
|
562 |
+
NYUv2/test/living_room_0045/rgb_1263_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1263_disparity.npz
|
563 |
+
NYUv2/test/living_room_0045/rgb_1264_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1264_disparity.npz
|
564 |
+
NYUv2/test/living_room_0045/rgb_1265_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1265_disparity.npz
|
565 |
+
NYUv2/test/living_room_0048/rgb_1275_rgb_left.mp4,NYUv2/test/living_room_0048/rgb_1275_disparity.npz
|
566 |
+
NYUv2/test/living_room_0048/rgb_1276_rgb_left.mp4,NYUv2/test/living_room_0048/rgb_1276_disparity.npz
|
567 |
+
NYUv2/test/living_room_0049/rgb_1277_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1277_disparity.npz
|
568 |
+
NYUv2/test/living_room_0049/rgb_1278_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1278_disparity.npz
|
569 |
+
NYUv2/test/living_room_0049/rgb_1279_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1279_disparity.npz
|
570 |
+
NYUv2/test/living_room_0049/rgb_1280_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1280_disparity.npz
|
571 |
+
NYUv2/test/living_room_0051/rgb_1285_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1285_disparity.npz
|
572 |
+
NYUv2/test/living_room_0051/rgb_1286_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1286_disparity.npz
|
573 |
+
NYUv2/test/living_room_0051/rgb_1287_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1287_disparity.npz
|
574 |
+
NYUv2/test/living_room_0051/rgb_1288_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1288_disparity.npz
|
575 |
+
NYUv2/test/living_room_0052/rgb_1289_rgb_left.mp4,NYUv2/test/living_room_0052/rgb_1289_disparity.npz
|
576 |
+
NYUv2/test/living_room_0052/rgb_1290_rgb_left.mp4,NYUv2/test/living_room_0052/rgb_1290_disparity.npz
|
577 |
+
NYUv2/test/living_room_0053/rgb_1291_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1291_disparity.npz
|
578 |
+
NYUv2/test/living_room_0053/rgb_1292_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1292_disparity.npz
|
579 |
+
NYUv2/test/living_room_0053/rgb_1293_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1293_disparity.npz
|
580 |
+
NYUv2/test/living_room_0054/rgb_1294_rgb_left.mp4,NYUv2/test/living_room_0054/rgb_1294_disparity.npz
|
581 |
+
NYUv2/test/living_room_0054/rgb_1295_rgb_left.mp4,NYUv2/test/living_room_0054/rgb_1295_disparity.npz
|
582 |
+
NYUv2/test/living_room_0056/rgb_1297_rgb_left.mp4,NYUv2/test/living_room_0056/rgb_1297_disparity.npz
|
583 |
+
NYUv2/test/living_room_0057/rgb_1298_rgb_left.mp4,NYUv2/test/living_room_0057/rgb_1298_disparity.npz
|
584 |
+
NYUv2/test/living_room_0057/rgb_1299_rgb_left.mp4,NYUv2/test/living_room_0057/rgb_1299_disparity.npz
|
585 |
+
NYUv2/test/living_room_0059/rgb_1302_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1302_disparity.npz
|
586 |
+
NYUv2/test/living_room_0059/rgb_1303_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1303_disparity.npz
|
587 |
+
NYUv2/test/living_room_0059/rgb_1304_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1304_disparity.npz
|
588 |
+
NYUv2/test/living_room_0059/rgb_1305_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1305_disparity.npz
|
589 |
+
NYUv2/test/living_room_0060/rgb_1306_rgb_left.mp4,NYUv2/test/living_room_0060/rgb_1306_disparity.npz
|
590 |
+
NYUv2/test/living_room_0060/rgb_1307_rgb_left.mp4,NYUv2/test/living_room_0060/rgb_1307_disparity.npz
|
591 |
+
NYUv2/test/living_room_0061/rgb_1308_rgb_left.mp4,NYUv2/test/living_room_0061/rgb_1308_disparity.npz
|
592 |
+
NYUv2/test/living_room_0064/rgb_1314_rgb_left.mp4,NYUv2/test/living_room_0064/rgb_1314_disparity.npz
|
593 |
+
NYUv2/test/living_room_0066/rgb_1315_rgb_left.mp4,NYUv2/test/living_room_0066/rgb_1315_disparity.npz
|
594 |
+
NYUv2/test/living_room_0072/rgb_1329_rgb_left.mp4,NYUv2/test/living_room_0072/rgb_1329_disparity.npz
|
595 |
+
NYUv2/test/living_room_0075/rgb_1330_rgb_left.mp4,NYUv2/test/living_room_0075/rgb_1330_disparity.npz
|
596 |
+
NYUv2/test/living_room_0075/rgb_1331_rgb_left.mp4,NYUv2/test/living_room_0075/rgb_1331_disparity.npz
|
597 |
+
NYUv2/test/living_room_0076/rgb_1332_rgb_left.mp4,NYUv2/test/living_room_0076/rgb_1332_disparity.npz
|
598 |
+
NYUv2/test/living_room_0079/rgb_1335_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1335_disparity.npz
|
599 |
+
NYUv2/test/living_room_0079/rgb_1336_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1336_disparity.npz
|
600 |
+
NYUv2/test/living_room_0079/rgb_1337_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1337_disparity.npz
|
601 |
+
NYUv2/test/living_room_0080/rgb_1338_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1338_disparity.npz
|
602 |
+
NYUv2/test/living_room_0080/rgb_1339_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1339_disparity.npz
|
603 |
+
NYUv2/test/living_room_0080/rgb_1340_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1340_disparity.npz
|
604 |
+
NYUv2/test/dining_room_0003/rgb_1347_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1347_disparity.npz
|
605 |
+
NYUv2/test/dining_room_0003/rgb_1348_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1348_disparity.npz
|
606 |
+
NYUv2/test/dining_room_0003/rgb_1349_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1349_disparity.npz
|
607 |
+
NYUv2/test/dining_room_0005/rgb_1353_rgb_left.mp4,NYUv2/test/dining_room_0005/rgb_1353_disparity.npz
|
608 |
+
NYUv2/test/dining_room_0005/rgb_1354_rgb_left.mp4,NYUv2/test/dining_room_0005/rgb_1354_disparity.npz
|
609 |
+
NYUv2/test/dining_room_0006/rgb_1355_rgb_left.mp4,NYUv2/test/dining_room_0006/rgb_1355_disparity.npz
|
610 |
+
NYUv2/test/dining_room_0006/rgb_1356_rgb_left.mp4,NYUv2/test/dining_room_0006/rgb_1356_disparity.npz
|
611 |
+
NYUv2/test/dining_room_0009/rgb_1364_rgb_left.mp4,NYUv2/test/dining_room_0009/rgb_1364_disparity.npz
|
612 |
+
NYUv2/test/dining_room_0009/rgb_1365_rgb_left.mp4,NYUv2/test/dining_room_0009/rgb_1365_disparity.npz
|
613 |
+
NYUv2/test/dining_room_0011/rgb_1368_rgb_left.mp4,NYUv2/test/dining_room_0011/rgb_1368_disparity.npz
|
614 |
+
NYUv2/test/dining_room_0011/rgb_1369_rgb_left.mp4,NYUv2/test/dining_room_0011/rgb_1369_disparity.npz
|
615 |
+
NYUv2/test/dining_room_0017/rgb_1384_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1384_disparity.npz
|
616 |
+
NYUv2/test/dining_room_0017/rgb_1385_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1385_disparity.npz
|
617 |
+
NYUv2/test/dining_room_0017/rgb_1386_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1386_disparity.npz
|
618 |
+
NYUv2/test/dining_room_0018/rgb_1387_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1387_disparity.npz
|
619 |
+
NYUv2/test/dining_room_0018/rgb_1388_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1388_disparity.npz
|
620 |
+
NYUv2/test/dining_room_0018/rgb_1389_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1389_disparity.npz
|
621 |
+
NYUv2/test/dining_room_0018/rgb_1390_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1390_disparity.npz
|
622 |
+
NYUv2/test/dining_room_0018/rgb_1391_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1391_disparity.npz
|
623 |
+
NYUv2/test/dining_room_0020/rgb_1394_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1394_disparity.npz
|
624 |
+
NYUv2/test/dining_room_0020/rgb_1395_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1395_disparity.npz
|
625 |
+
NYUv2/test/dining_room_0020/rgb_1396_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1396_disparity.npz
|
626 |
+
NYUv2/test/dining_room_0021/rgb_1397_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1397_disparity.npz
|
627 |
+
NYUv2/test/dining_room_0021/rgb_1398_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1398_disparity.npz
|
628 |
+
NYUv2/test/dining_room_0021/rgb_1399_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1399_disparity.npz
|
629 |
+
NYUv2/test/dining_room_0022/rgb_1400_rgb_left.mp4,NYUv2/test/dining_room_0022/rgb_1400_disparity.npz
|
630 |
+
NYUv2/test/dining_room_0022/rgb_1401_rgb_left.mp4,NYUv2/test/dining_room_0022/rgb_1401_disparity.npz
|
631 |
+
NYUv2/test/dining_room_0025/rgb_1407_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1407_disparity.npz
|
632 |
+
NYUv2/test/dining_room_0025/rgb_1408_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1408_disparity.npz
|
633 |
+
NYUv2/test/dining_room_0025/rgb_1409_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1409_disparity.npz
|
634 |
+
NYUv2/test/dining_room_0025/rgb_1410_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1410_disparity.npz
|
635 |
+
NYUv2/test/dining_room_0025/rgb_1411_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1411_disparity.npz
|
636 |
+
NYUv2/test/dining_room_0026/rgb_1412_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1412_disparity.npz
|
637 |
+
NYUv2/test/dining_room_0026/rgb_1413_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1413_disparity.npz
|
638 |
+
NYUv2/test/dining_room_0026/rgb_1414_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1414_disparity.npz
|
639 |
+
NYUv2/test/dining_room_0030/rgb_1421_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1421_disparity.npz
|
640 |
+
NYUv2/test/dining_room_0030/rgb_1422_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1422_disparity.npz
|
641 |
+
NYUv2/test/dining_room_0030/rgb_1423_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1423_disparity.npz
|
642 |
+
NYUv2/test/dining_room_0030/rgb_1424_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1424_disparity.npz
|
643 |
+
NYUv2/test/dining_room_0032/rgb_1430_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1430_disparity.npz
|
644 |
+
NYUv2/test/dining_room_0032/rgb_1431_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1431_disparity.npz
|
645 |
+
NYUv2/test/dining_room_0032/rgb_1432_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1432_disparity.npz
|
646 |
+
NYUv2/test/dining_room_0032/rgb_1433_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1433_disparity.npz
|
647 |
+
NYUv2/test/dining_room_0035/rgb_1441_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1441_disparity.npz
|
648 |
+
NYUv2/test/dining_room_0035/rgb_1442_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1442_disparity.npz
|
649 |
+
NYUv2/test/dining_room_0035/rgb_1443_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1443_disparity.npz
|
650 |
+
NYUv2/test/dining_room_0036/rgb_1444_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1444_disparity.npz
|
651 |
+
NYUv2/test/dining_room_0036/rgb_1445_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1445_disparity.npz
|
652 |
+
NYUv2/test/dining_room_0036/rgb_1446_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1446_disparity.npz
|
653 |
+
NYUv2/test/dining_room_0036/rgb_1447_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1447_disparity.npz
|
654 |
+
NYUv2/test/dining_room_0036/rgb_1448_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1448_disparity.npz
|
655 |
+
NYUv2/test/dining_room_0036/rgb_1449_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1449_disparity.npz
|
benchmark/csv/meta_scannet_test.csv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
filepath_left,filepath_disparity
|
2 |
+
scannet/scene0707_00_rgb_left.mp4,scannet/scene0707_00_disparity.npz
|
3 |
+
scannet/scene0708_00_rgb_left.mp4,scannet/scene0708_00_disparity.npz
|
4 |
+
scannet/scene0709_00_rgb_left.mp4,scannet/scene0709_00_disparity.npz
|
5 |
+
scannet/scene0710_00_rgb_left.mp4,scannet/scene0710_00_disparity.npz
|
6 |
+
scannet/scene0711_00_rgb_left.mp4,scannet/scene0711_00_disparity.npz
|
7 |
+
scannet/scene0712_00_rgb_left.mp4,scannet/scene0712_00_disparity.npz
|
8 |
+
scannet/scene0713_00_rgb_left.mp4,scannet/scene0713_00_disparity.npz
|
9 |
+
scannet/scene0714_00_rgb_left.mp4,scannet/scene0714_00_disparity.npz
|
10 |
+
scannet/scene0715_00_rgb_left.mp4,scannet/scene0715_00_disparity.npz
|
11 |
+
scannet/scene0716_00_rgb_left.mp4,scannet/scene0716_00_disparity.npz
|
12 |
+
scannet/scene0717_00_rgb_left.mp4,scannet/scene0717_00_disparity.npz
|
13 |
+
scannet/scene0718_00_rgb_left.mp4,scannet/scene0718_00_disparity.npz
|
14 |
+
scannet/scene0719_00_rgb_left.mp4,scannet/scene0719_00_disparity.npz
|
15 |
+
scannet/scene0720_00_rgb_left.mp4,scannet/scene0720_00_disparity.npz
|
16 |
+
scannet/scene0721_00_rgb_left.mp4,scannet/scene0721_00_disparity.npz
|
17 |
+
scannet/scene0722_00_rgb_left.mp4,scannet/scene0722_00_disparity.npz
|
18 |
+
scannet/scene0723_00_rgb_left.mp4,scannet/scene0723_00_disparity.npz
|
19 |
+
scannet/scene0724_00_rgb_left.mp4,scannet/scene0724_00_disparity.npz
|
20 |
+
scannet/scene0725_00_rgb_left.mp4,scannet/scene0725_00_disparity.npz
|
21 |
+
scannet/scene0726_00_rgb_left.mp4,scannet/scene0726_00_disparity.npz
|
22 |
+
scannet/scene0727_00_rgb_left.mp4,scannet/scene0727_00_disparity.npz
|
23 |
+
scannet/scene0728_00_rgb_left.mp4,scannet/scene0728_00_disparity.npz
|
24 |
+
scannet/scene0729_00_rgb_left.mp4,scannet/scene0729_00_disparity.npz
|
25 |
+
scannet/scene0730_00_rgb_left.mp4,scannet/scene0730_00_disparity.npz
|
26 |
+
scannet/scene0731_00_rgb_left.mp4,scannet/scene0731_00_disparity.npz
|
27 |
+
scannet/scene0732_00_rgb_left.mp4,scannet/scene0732_00_disparity.npz
|
28 |
+
scannet/scene0733_00_rgb_left.mp4,scannet/scene0733_00_disparity.npz
|
29 |
+
scannet/scene0734_00_rgb_left.mp4,scannet/scene0734_00_disparity.npz
|
30 |
+
scannet/scene0735_00_rgb_left.mp4,scannet/scene0735_00_disparity.npz
|
31 |
+
scannet/scene0736_00_rgb_left.mp4,scannet/scene0736_00_disparity.npz
|
32 |
+
scannet/scene0737_00_rgb_left.mp4,scannet/scene0737_00_disparity.npz
|
33 |
+
scannet/scene0738_00_rgb_left.mp4,scannet/scene0738_00_disparity.npz
|
34 |
+
scannet/scene0739_00_rgb_left.mp4,scannet/scene0739_00_disparity.npz
|
35 |
+
scannet/scene0740_00_rgb_left.mp4,scannet/scene0740_00_disparity.npz
|
36 |
+
scannet/scene0741_00_rgb_left.mp4,scannet/scene0741_00_disparity.npz
|
37 |
+
scannet/scene0742_00_rgb_left.mp4,scannet/scene0742_00_disparity.npz
|
38 |
+
scannet/scene0743_00_rgb_left.mp4,scannet/scene0743_00_disparity.npz
|
39 |
+
scannet/scene0744_00_rgb_left.mp4,scannet/scene0744_00_disparity.npz
|
40 |
+
scannet/scene0745_00_rgb_left.mp4,scannet/scene0745_00_disparity.npz
|
41 |
+
scannet/scene0746_00_rgb_left.mp4,scannet/scene0746_00_disparity.npz
|
42 |
+
scannet/scene0747_00_rgb_left.mp4,scannet/scene0747_00_disparity.npz
|
43 |
+
scannet/scene0748_00_rgb_left.mp4,scannet/scene0748_00_disparity.npz
|
44 |
+
scannet/scene0749_00_rgb_left.mp4,scannet/scene0749_00_disparity.npz
|
45 |
+
scannet/scene0750_00_rgb_left.mp4,scannet/scene0750_00_disparity.npz
|
46 |
+
scannet/scene0751_00_rgb_left.mp4,scannet/scene0751_00_disparity.npz
|
47 |
+
scannet/scene0752_00_rgb_left.mp4,scannet/scene0752_00_disparity.npz
|
48 |
+
scannet/scene0753_00_rgb_left.mp4,scannet/scene0753_00_disparity.npz
|
49 |
+
scannet/scene0754_00_rgb_left.mp4,scannet/scene0754_00_disparity.npz
|
50 |
+
scannet/scene0755_00_rgb_left.mp4,scannet/scene0755_00_disparity.npz
|
51 |
+
scannet/scene0756_00_rgb_left.mp4,scannet/scene0756_00_disparity.npz
|
52 |
+
scannet/scene0757_00_rgb_left.mp4,scannet/scene0757_00_disparity.npz
|
53 |
+
scannet/scene0758_00_rgb_left.mp4,scannet/scene0758_00_disparity.npz
|
54 |
+
scannet/scene0759_00_rgb_left.mp4,scannet/scene0759_00_disparity.npz
|
55 |
+
scannet/scene0760_00_rgb_left.mp4,scannet/scene0760_00_disparity.npz
|
56 |
+
scannet/scene0761_00_rgb_left.mp4,scannet/scene0761_00_disparity.npz
|
57 |
+
scannet/scene0762_00_rgb_left.mp4,scannet/scene0762_00_disparity.npz
|
58 |
+
scannet/scene0763_00_rgb_left.mp4,scannet/scene0763_00_disparity.npz
|
59 |
+
scannet/scene0764_00_rgb_left.mp4,scannet/scene0764_00_disparity.npz
|
60 |
+
scannet/scene0765_00_rgb_left.mp4,scannet/scene0765_00_disparity.npz
|
61 |
+
scannet/scene0766_00_rgb_left.mp4,scannet/scene0766_00_disparity.npz
|
62 |
+
scannet/scene0767_00_rgb_left.mp4,scannet/scene0767_00_disparity.npz
|
63 |
+
scannet/scene0768_00_rgb_left.mp4,scannet/scene0768_00_disparity.npz
|
64 |
+
scannet/scene0769_00_rgb_left.mp4,scannet/scene0769_00_disparity.npz
|
65 |
+
scannet/scene0770_00_rgb_left.mp4,scannet/scene0770_00_disparity.npz
|
66 |
+
scannet/scene0771_00_rgb_left.mp4,scannet/scene0771_00_disparity.npz
|
67 |
+
scannet/scene0772_00_rgb_left.mp4,scannet/scene0772_00_disparity.npz
|
68 |
+
scannet/scene0773_00_rgb_left.mp4,scannet/scene0773_00_disparity.npz
|
69 |
+
scannet/scene0774_00_rgb_left.mp4,scannet/scene0774_00_disparity.npz
|
70 |
+
scannet/scene0775_00_rgb_left.mp4,scannet/scene0775_00_disparity.npz
|
71 |
+
scannet/scene0776_00_rgb_left.mp4,scannet/scene0776_00_disparity.npz
|
72 |
+
scannet/scene0777_00_rgb_left.mp4,scannet/scene0777_00_disparity.npz
|
73 |
+
scannet/scene0778_00_rgb_left.mp4,scannet/scene0778_00_disparity.npz
|
74 |
+
scannet/scene0779_00_rgb_left.mp4,scannet/scene0779_00_disparity.npz
|
75 |
+
scannet/scene0780_00_rgb_left.mp4,scannet/scene0780_00_disparity.npz
|
76 |
+
scannet/scene0781_00_rgb_left.mp4,scannet/scene0781_00_disparity.npz
|
77 |
+
scannet/scene0782_00_rgb_left.mp4,scannet/scene0782_00_disparity.npz
|
78 |
+
scannet/scene0783_00_rgb_left.mp4,scannet/scene0783_00_disparity.npz
|
79 |
+
scannet/scene0784_00_rgb_left.mp4,scannet/scene0784_00_disparity.npz
|
80 |
+
scannet/scene0785_00_rgb_left.mp4,scannet/scene0785_00_disparity.npz
|
81 |
+
scannet/scene0786_00_rgb_left.mp4,scannet/scene0786_00_disparity.npz
|
82 |
+
scannet/scene0787_00_rgb_left.mp4,scannet/scene0787_00_disparity.npz
|
83 |
+
scannet/scene0788_00_rgb_left.mp4,scannet/scene0788_00_disparity.npz
|
84 |
+
scannet/scene0789_00_rgb_left.mp4,scannet/scene0789_00_disparity.npz
|
85 |
+
scannet/scene0790_00_rgb_left.mp4,scannet/scene0790_00_disparity.npz
|
86 |
+
scannet/scene0791_00_rgb_left.mp4,scannet/scene0791_00_disparity.npz
|
87 |
+
scannet/scene0792_00_rgb_left.mp4,scannet/scene0792_00_disparity.npz
|
88 |
+
scannet/scene0793_00_rgb_left.mp4,scannet/scene0793_00_disparity.npz
|
89 |
+
scannet/scene0794_00_rgb_left.mp4,scannet/scene0794_00_disparity.npz
|
90 |
+
scannet/scene0795_00_rgb_left.mp4,scannet/scene0795_00_disparity.npz
|
91 |
+
scannet/scene0796_00_rgb_left.mp4,scannet/scene0796_00_disparity.npz
|
92 |
+
scannet/scene0797_00_rgb_left.mp4,scannet/scene0797_00_disparity.npz
|
93 |
+
scannet/scene0798_00_rgb_left.mp4,scannet/scene0798_00_disparity.npz
|
94 |
+
scannet/scene0799_00_rgb_left.mp4,scannet/scene0799_00_disparity.npz
|
95 |
+
scannet/scene0800_00_rgb_left.mp4,scannet/scene0800_00_disparity.npz
|
96 |
+
scannet/scene0801_00_rgb_left.mp4,scannet/scene0801_00_disparity.npz
|
97 |
+
scannet/scene0802_00_rgb_left.mp4,scannet/scene0802_00_disparity.npz
|
98 |
+
scannet/scene0803_00_rgb_left.mp4,scannet/scene0803_00_disparity.npz
|
99 |
+
scannet/scene0804_00_rgb_left.mp4,scannet/scene0804_00_disparity.npz
|
100 |
+
scannet/scene0805_00_rgb_left.mp4,scannet/scene0805_00_disparity.npz
|
101 |
+
scannet/scene0806_00_rgb_left.mp4,scannet/scene0806_00_disparity.npz
|
benchmark/csv/meta_sintel.csv
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
filepath_left,filepath_disparity
|
2 |
+
sintel/ambush_5_rgb_left.mp4,sintel/ambush_5_disparity.npz
|
3 |
+
sintel/bamboo_2_rgb_left.mp4,sintel/bamboo_2_disparity.npz
|
4 |
+
sintel/mountain_1_rgb_left.mp4,sintel/mountain_1_disparity.npz
|
5 |
+
sintel/bamboo_1_rgb_left.mp4,sintel/bamboo_1_disparity.npz
|
6 |
+
sintel/shaman_2_rgb_left.mp4,sintel/shaman_2_disparity.npz
|
7 |
+
sintel/ambush_6_rgb_left.mp4,sintel/ambush_6_disparity.npz
|
8 |
+
sintel/bandage_1_rgb_left.mp4,sintel/bandage_1_disparity.npz
|
9 |
+
sintel/alley_1_rgb_left.mp4,sintel/alley_1_disparity.npz
|
10 |
+
sintel/temple_3_rgb_left.mp4,sintel/temple_3_disparity.npz
|
11 |
+
sintel/shaman_3_rgb_left.mp4,sintel/shaman_3_disparity.npz
|
12 |
+
sintel/ambush_2_rgb_left.mp4,sintel/ambush_2_disparity.npz
|
13 |
+
sintel/cave_4_rgb_left.mp4,sintel/cave_4_disparity.npz
|
14 |
+
sintel/cave_2_rgb_left.mp4,sintel/cave_2_disparity.npz
|
15 |
+
sintel/alley_2_rgb_left.mp4,sintel/alley_2_disparity.npz
|
16 |
+
sintel/market_5_rgb_left.mp4,sintel/market_5_disparity.npz
|
17 |
+
sintel/sleeping_2_rgb_left.mp4,sintel/sleeping_2_disparity.npz
|
18 |
+
sintel/ambush_4_rgb_left.mp4,sintel/ambush_4_disparity.npz
|
19 |
+
sintel/sleeping_1_rgb_left.mp4,sintel/sleeping_1_disparity.npz
|
20 |
+
sintel/market_6_rgb_left.mp4,sintel/market_6_disparity.npz
|
21 |
+
sintel/market_2_rgb_left.mp4,sintel/market_2_disparity.npz
|
22 |
+
sintel/bandage_2_rgb_left.mp4,sintel/bandage_2_disparity.npz
|
23 |
+
sintel/ambush_7_rgb_left.mp4,sintel/ambush_7_disparity.npz
|
24 |
+
sintel/temple_2_rgb_left.mp4,sintel/temple_2_disparity.npz
|
benchmark/dataset_extract/dataset_extract_bonn.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import os.path as osp
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
import imageio
|
7 |
+
import csv
|
8 |
+
|
9 |
+
|
10 |
+
def depth_read(filename):
|
11 |
+
# loads depth map D from png file
|
12 |
+
# and returns it as a numpy array
|
13 |
+
|
14 |
+
depth_png = np.asarray(Image.open(filename))
|
15 |
+
# make sure we have a proper 16bit depth map here.. not 8bit!
|
16 |
+
assert np.max(depth_png) > 255
|
17 |
+
|
18 |
+
depth = depth_png.astype(np.float64) / 5000.0
|
19 |
+
depth[depth_png == 0] = -1.0
|
20 |
+
return depth
|
21 |
+
|
22 |
+
|
23 |
+
def extract_bonn(
|
24 |
+
root,
|
25 |
+
depth_root,
|
26 |
+
sample_len=-1,
|
27 |
+
csv_save_path="",
|
28 |
+
datatset_name="",
|
29 |
+
saved_rgb_dir="",
|
30 |
+
saved_disp_dir="",
|
31 |
+
start_frame=0,
|
32 |
+
end_frame=110,
|
33 |
+
):
|
34 |
+
scenes_names = os.listdir(depth_root)
|
35 |
+
all_samples = []
|
36 |
+
for i, seq_name in enumerate(tqdm(scenes_names)):
|
37 |
+
# load all images
|
38 |
+
all_img_names = os.listdir(osp.join(depth_root, seq_name, "rgb"))
|
39 |
+
all_img_names = [x for x in all_img_names if x.endswith(".png")]
|
40 |
+
print(f"sequence frame number: {len(all_img_names)}")
|
41 |
+
|
42 |
+
# for not zero padding image name
|
43 |
+
all_img_names.sort()
|
44 |
+
all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
|
45 |
+
all_img_names = all_img_names[start_frame:end_frame]
|
46 |
+
|
47 |
+
all_depth_names = os.listdir(osp.join(depth_root, seq_name, "depth"))
|
48 |
+
all_depth_names = [x for x in all_depth_names if x.endswith(".png")]
|
49 |
+
print(f"sequence depth number: {len(all_depth_names)}")
|
50 |
+
|
51 |
+
# for not zero padding image name
|
52 |
+
all_depth_names.sort()
|
53 |
+
all_depth_names = sorted(
|
54 |
+
all_depth_names, key=lambda x: int(x.split(".")[0][-4:])
|
55 |
+
)
|
56 |
+
all_depth_names = all_depth_names[start_frame:end_frame]
|
57 |
+
|
58 |
+
seq_len = len(all_img_names)
|
59 |
+
step = sample_len if sample_len > 0 else seq_len
|
60 |
+
|
61 |
+
for ref_idx in range(0, seq_len, step):
|
62 |
+
print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
|
63 |
+
|
64 |
+
video_imgs = []
|
65 |
+
video_depths = []
|
66 |
+
|
67 |
+
if (ref_idx + step) <= seq_len:
|
68 |
+
ref_e = ref_idx + step
|
69 |
+
else:
|
70 |
+
continue
|
71 |
+
|
72 |
+
# for idx in range(ref_idx, ref_idx + step):
|
73 |
+
for idx in range(ref_idx, ref_e):
|
74 |
+
im_path = osp.join(root, seq_name, "rgb", all_img_names[idx])
|
75 |
+
depth_path = osp.join(
|
76 |
+
depth_root, seq_name, "depth", all_depth_names[idx]
|
77 |
+
)
|
78 |
+
|
79 |
+
depth = depth_read(depth_path)
|
80 |
+
disp = depth
|
81 |
+
|
82 |
+
video_depths.append(disp)
|
83 |
+
video_imgs.append(np.array(Image.open(im_path)))
|
84 |
+
|
85 |
+
disp_video = np.array(video_depths)[:, None] # [:, 0:1, :, :, 0]
|
86 |
+
img_video = np.array(video_imgs)[..., 0:3] # [:, 0, :, :, 0:3]
|
87 |
+
|
88 |
+
print(disp_video.max(), disp_video.min())
|
89 |
+
|
90 |
+
def even_or_odd(num):
|
91 |
+
if num % 2 == 0:
|
92 |
+
return num
|
93 |
+
else:
|
94 |
+
return num - 1
|
95 |
+
|
96 |
+
# print(disp_video.shape)
|
97 |
+
# print(img_video.shape)
|
98 |
+
height = disp_video.shape[-2]
|
99 |
+
width = disp_video.shape[-1]
|
100 |
+
height = even_or_odd(height)
|
101 |
+
width = even_or_odd(width)
|
102 |
+
disp_video = disp_video[:, :, 0:height, 0:width]
|
103 |
+
img_video = img_video[:, 0:height, 0:width]
|
104 |
+
|
105 |
+
data_root = saved_rgb_dir + datatset_name
|
106 |
+
disp_root = saved_disp_dir + datatset_name
|
107 |
+
os.makedirs(data_root, exist_ok=True)
|
108 |
+
os.makedirs(disp_root, exist_ok=True)
|
109 |
+
|
110 |
+
img_video_dir = data_root
|
111 |
+
disp_video_dir = disp_root
|
112 |
+
|
113 |
+
img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
|
114 |
+
disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
|
115 |
+
|
116 |
+
imageio.mimsave(
|
117 |
+
img_video_path, img_video, fps=15, quality=9, macro_block_size=1
|
118 |
+
)
|
119 |
+
np.savez(disp_video_path, disparity=disp_video)
|
120 |
+
|
121 |
+
sample = {}
|
122 |
+
sample["filepath_left"] = os.path.join(
|
123 |
+
f"{datatset_name}/{seq_name}_rgb_left.mp4"
|
124 |
+
) # img_video_path
|
125 |
+
sample["filepath_disparity"] = os.path.join(
|
126 |
+
f"{datatset_name}/{seq_name}_disparity.npz"
|
127 |
+
) # disp_video_path
|
128 |
+
|
129 |
+
all_samples.append(sample)
|
130 |
+
|
131 |
+
# save csv file
|
132 |
+
|
133 |
+
filename_ = csv_save_path
|
134 |
+
os.makedirs(os.path.dirname(filename_), exist_ok=True)
|
135 |
+
fields = ["filepath_left", "filepath_disparity"]
|
136 |
+
with open(filename_, "w") as csvfile:
|
137 |
+
writer = csv.DictWriter(csvfile, fieldnames=fields)
|
138 |
+
writer.writeheader()
|
139 |
+
writer.writerows(all_samples)
|
140 |
+
|
141 |
+
print(f"{filename_} has been saved.")
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
extract_bonn(
|
146 |
+
root="path/to/Bonn-RGBD",
|
147 |
+
depth_root="path/to/Bonn-RGBD",
|
148 |
+
saved_rgb_dir="./benchmark/datasets/",
|
149 |
+
saved_disp_dir="./benchmark/datasets/",
|
150 |
+
csv_save_path=f"./benchmark/datasets/bonn.csv",
|
151 |
+
sample_len=-1,
|
152 |
+
datatset_name="bonn",
|
153 |
+
start_frame=30,
|
154 |
+
end_frame=140,
|
155 |
+
)
|
benchmark/dataset_extract/dataset_extract_kitti.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import os.path as osp
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
import csv
|
7 |
+
import imageio
|
8 |
+
|
9 |
+
|
10 |
+
def depth_read(filename):
|
11 |
+
# loads depth map D from png file
|
12 |
+
# and returns it as a numpy array,
|
13 |
+
|
14 |
+
depth_png = np.array(Image.open(filename), dtype=int)
|
15 |
+
# make sure we have a proper 16bit depth map here.. not 8bit!
|
16 |
+
assert np.max(depth_png) > 255
|
17 |
+
|
18 |
+
depth = depth_png.astype(np.float64) / 256.0
|
19 |
+
depth[depth_png == 0] = -1.0
|
20 |
+
return depth
|
21 |
+
|
22 |
+
|
23 |
+
def extract_kitti(
|
24 |
+
root,
|
25 |
+
depth_root,
|
26 |
+
sample_len=-1,
|
27 |
+
csv_save_path="",
|
28 |
+
datatset_name="",
|
29 |
+
saved_rgb_dir="",
|
30 |
+
saved_disp_dir="",
|
31 |
+
start_frame=0,
|
32 |
+
end_frame=110,
|
33 |
+
):
|
34 |
+
scenes_names = os.listdir(depth_root)
|
35 |
+
all_samples = []
|
36 |
+
for i, seq_name in enumerate(tqdm(scenes_names)):
|
37 |
+
all_img_names = os.listdir(
|
38 |
+
osp.join(depth_root, seq_name, "proj_depth/groundtruth/image_02")
|
39 |
+
)
|
40 |
+
all_img_names = [x for x in all_img_names if x.endswith(".png")]
|
41 |
+
print(f"sequence frame number: {len(all_img_names)}")
|
42 |
+
|
43 |
+
all_img_names.sort()
|
44 |
+
all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
|
45 |
+
all_img_names = all_img_names[start_frame:end_frame]
|
46 |
+
|
47 |
+
seq_len = len(all_img_names)
|
48 |
+
step = sample_len if sample_len > 0 else seq_len
|
49 |
+
|
50 |
+
for ref_idx in range(0, seq_len, step):
|
51 |
+
print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
|
52 |
+
|
53 |
+
video_imgs = []
|
54 |
+
video_depths = []
|
55 |
+
|
56 |
+
if (ref_idx + step) <= seq_len:
|
57 |
+
ref_e = ref_idx + step
|
58 |
+
else:
|
59 |
+
continue
|
60 |
+
|
61 |
+
for idx in range(ref_idx, ref_e):
|
62 |
+
im_path = osp.join(
|
63 |
+
root, seq_name[0:10], seq_name, "image_02/data", all_img_names[idx]
|
64 |
+
)
|
65 |
+
depth_path = osp.join(
|
66 |
+
depth_root,
|
67 |
+
seq_name,
|
68 |
+
"proj_depth/groundtruth/image_02",
|
69 |
+
all_img_names[idx],
|
70 |
+
)
|
71 |
+
|
72 |
+
depth = depth_read(depth_path)
|
73 |
+
disp = depth
|
74 |
+
|
75 |
+
video_depths.append(disp)
|
76 |
+
video_imgs.append(np.array(Image.open(im_path)))
|
77 |
+
|
78 |
+
disp_video = np.array(video_depths)[:, None]
|
79 |
+
img_video = np.array(video_imgs)[..., 0:3]
|
80 |
+
|
81 |
+
def even_or_odd(num):
|
82 |
+
if num % 2 == 0:
|
83 |
+
return num
|
84 |
+
else:
|
85 |
+
return num - 1
|
86 |
+
|
87 |
+
height = disp_video.shape[-2]
|
88 |
+
width = disp_video.shape[-1]
|
89 |
+
height = even_or_odd(height)
|
90 |
+
width = even_or_odd(width)
|
91 |
+
disp_video = disp_video[:, :, 0:height, 0:width]
|
92 |
+
img_video = img_video[:, 0:height, 0:width]
|
93 |
+
|
94 |
+
data_root = saved_rgb_dir + datatset_name
|
95 |
+
disp_root = saved_disp_dir + datatset_name
|
96 |
+
os.makedirs(data_root, exist_ok=True)
|
97 |
+
os.makedirs(disp_root, exist_ok=True)
|
98 |
+
|
99 |
+
img_video_dir = data_root
|
100 |
+
disp_video_dir = disp_root
|
101 |
+
|
102 |
+
img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
|
103 |
+
disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
|
104 |
+
|
105 |
+
imageio.mimsave(
|
106 |
+
img_video_path, img_video, fps=15, quality=10, macro_block_size=1
|
107 |
+
)
|
108 |
+
np.savez(disp_video_path, disparity=disp_video)
|
109 |
+
|
110 |
+
sample = {}
|
111 |
+
sample["filepath_left"] = os.path.join(f"KITTI/{seq_name}_rgb_left.mp4")
|
112 |
+
sample["filepath_disparity"] = os.path.join(
|
113 |
+
f"KITTI/{seq_name}_disparity.npz"
|
114 |
+
)
|
115 |
+
|
116 |
+
all_samples.append(sample)
|
117 |
+
|
118 |
+
filename_ = csv_save_path
|
119 |
+
os.makedirs(os.path.dirname(filename_), exist_ok=True)
|
120 |
+
fields = ["filepath_left", "filepath_disparity"]
|
121 |
+
with open(filename_, "w") as csvfile:
|
122 |
+
writer = csv.DictWriter(csvfile, fieldnames=fields)
|
123 |
+
writer.writeheader()
|
124 |
+
writer.writerows(all_samples)
|
125 |
+
|
126 |
+
print(f"{filename_} has been saved.")
|
127 |
+
|
128 |
+
|
129 |
+
if __name__ == "__main__":
|
130 |
+
extract_kitti(
|
131 |
+
root="path/to/KITTI/raw_data",
|
132 |
+
depth_root="path/to/KITTI/data_depth_annotated/val",
|
133 |
+
saved_rgb_dir="./benchmark/datasets/",
|
134 |
+
saved_disp_dir="./benchmark/datasets/",
|
135 |
+
csv_save_path=f"./benchmark/datasets/KITTI.csv",
|
136 |
+
sample_len=-1,
|
137 |
+
datatset_name="KITTI",
|
138 |
+
start_frame=0,
|
139 |
+
end_frame=110,
|
140 |
+
)
|
benchmark/dataset_extract/dataset_extract_nyu.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import os.path as osp
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
import csv
|
7 |
+
import imageio
|
8 |
+
|
9 |
+
|
10 |
+
def _read_image(img_rel_path) -> np.ndarray:
|
11 |
+
image_to_read = img_rel_path
|
12 |
+
image = Image.open(image_to_read)
|
13 |
+
image = np.asarray(image)
|
14 |
+
return image
|
15 |
+
|
16 |
+
|
17 |
+
def depth_read(filename):
|
18 |
+
depth_in = _read_image(filename)
|
19 |
+
depth_decoded = depth_in / 1000.0
|
20 |
+
return depth_decoded
|
21 |
+
|
22 |
+
|
23 |
+
def extract_nyu(
|
24 |
+
root,
|
25 |
+
depth_root,
|
26 |
+
csv_save_path="",
|
27 |
+
datatset_name="",
|
28 |
+
filename_ls_path="",
|
29 |
+
saved_rgb_dir="",
|
30 |
+
saved_disp_dir="",
|
31 |
+
):
|
32 |
+
with open(filename_ls_path, "r") as f:
|
33 |
+
filenames = [s.split() for s in f.readlines()]
|
34 |
+
|
35 |
+
all_samples = []
|
36 |
+
for i, pair_names in enumerate(tqdm(filenames)):
|
37 |
+
img_name = pair_names[0]
|
38 |
+
filled_depth_name = pair_names[2]
|
39 |
+
|
40 |
+
im_path = osp.join(root, img_name)
|
41 |
+
depth_path = osp.join(depth_root, filled_depth_name)
|
42 |
+
|
43 |
+
depth = depth_read(depth_path)
|
44 |
+
disp = depth
|
45 |
+
|
46 |
+
video_depths = [disp]
|
47 |
+
video_imgs = [np.array(Image.open(im_path))]
|
48 |
+
|
49 |
+
disp_video = np.array(video_depths)[:, None]
|
50 |
+
img_video = np.array(video_imgs)[..., 0:3]
|
51 |
+
|
52 |
+
disp_video = disp_video[:, :, 45:471, 41:601]
|
53 |
+
img_video = img_video[:, 45:471, 41:601, :]
|
54 |
+
|
55 |
+
data_root = saved_rgb_dir + datatset_name
|
56 |
+
disp_root = saved_disp_dir + datatset_name
|
57 |
+
os.makedirs(data_root, exist_ok=True)
|
58 |
+
os.makedirs(disp_root, exist_ok=True)
|
59 |
+
|
60 |
+
img_video_dir = data_root
|
61 |
+
disp_video_dir = disp_root
|
62 |
+
|
63 |
+
img_video_path = os.path.join(img_video_dir, f"{img_name[:-4]}_rgb_left.mp4")
|
64 |
+
disp_video_path = os.path.join(disp_video_dir, f"{img_name[:-4]}_disparity.npz")
|
65 |
+
|
66 |
+
dir_name = os.path.dirname(img_video_path)
|
67 |
+
os.makedirs(dir_name, exist_ok=True)
|
68 |
+
dir_name = os.path.dirname(disp_video_path)
|
69 |
+
os.makedirs(dir_name, exist_ok=True)
|
70 |
+
|
71 |
+
imageio.mimsave(
|
72 |
+
img_video_path, img_video, fps=15, quality=10, macro_block_size=1
|
73 |
+
)
|
74 |
+
np.savez(disp_video_path, disparity=disp_video)
|
75 |
+
|
76 |
+
sample = {}
|
77 |
+
sample["filepath_left"] = os.path.join(
|
78 |
+
f"{datatset_name}/{img_name[:-4]}_rgb_left.mp4"
|
79 |
+
)
|
80 |
+
sample["filepath_disparity"] = os.path.join(
|
81 |
+
f"{datatset_name}/{img_name[:-4]}_disparity.npz"
|
82 |
+
)
|
83 |
+
|
84 |
+
all_samples.append(sample)
|
85 |
+
|
86 |
+
filename_ = csv_save_path
|
87 |
+
os.makedirs(os.path.dirname(filename_), exist_ok=True)
|
88 |
+
fields = ["filepath_left", "filepath_disparity"]
|
89 |
+
with open(filename_, "w") as csvfile:
|
90 |
+
writer = csv.DictWriter(csvfile, fieldnames=fields)
|
91 |
+
writer.writeheader()
|
92 |
+
writer.writerows(all_samples)
|
93 |
+
|
94 |
+
print(f"{filename_} has been saved.")
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
extract_nyu(
|
99 |
+
root="path/to/NYUv2/",
|
100 |
+
depth_root="path/to/NYUv2/",
|
101 |
+
filename_ls_path="path/to/NYUv2/filename_list_test.txt",
|
102 |
+
saved_rgb_dir="./benchmark/datasets/",
|
103 |
+
saved_disp_dir="./benchmark/datasets/",
|
104 |
+
csv_save_path=f"./benchmark/datasets/NYUv2.csv",
|
105 |
+
datatset_name="NYUv2",
|
106 |
+
)
|
benchmark/dataset_extract/dataset_extract_scannet.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import os.path as osp
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
import csv
|
7 |
+
import imageio
|
8 |
+
|
9 |
+
|
10 |
+
def _read_image(img_rel_path) -> np.ndarray:
|
11 |
+
image_to_read = img_rel_path
|
12 |
+
image = Image.open(image_to_read) # [H, W, rgb]
|
13 |
+
image = np.asarray(image)
|
14 |
+
return image
|
15 |
+
|
16 |
+
|
17 |
+
def depth_read(filename):
|
18 |
+
depth_in = _read_image(filename)
|
19 |
+
depth_decoded = depth_in / 1000.0
|
20 |
+
return depth_decoded
|
21 |
+
|
22 |
+
|
23 |
+
def extract_scannet(
|
24 |
+
root,
|
25 |
+
sample_len=-1,
|
26 |
+
csv_save_path="",
|
27 |
+
datatset_name="",
|
28 |
+
scene_number=16,
|
29 |
+
scene_frames_len=120,
|
30 |
+
stride=1,
|
31 |
+
saved_rgb_dir="",
|
32 |
+
saved_disp_dir="",
|
33 |
+
):
|
34 |
+
scenes_names = os.listdir(root)
|
35 |
+
scenes_names = sorted(scenes_names)[:scene_number]
|
36 |
+
all_samples = []
|
37 |
+
for i, seq_name in enumerate(tqdm(scenes_names)):
|
38 |
+
all_img_names = os.listdir(osp.join(root, seq_name, "color"))
|
39 |
+
all_img_names = [x for x in all_img_names if x.endswith(".jpg")]
|
40 |
+
all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0]))
|
41 |
+
all_img_names = all_img_names[:scene_frames_len:stride]
|
42 |
+
print(f"sequence frame number: {len(all_img_names)}")
|
43 |
+
|
44 |
+
seq_len = len(all_img_names)
|
45 |
+
step = sample_len if sample_len > 0 else seq_len
|
46 |
+
|
47 |
+
for ref_idx in range(0, seq_len, step):
|
48 |
+
print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
|
49 |
+
|
50 |
+
video_imgs = []
|
51 |
+
video_depths = []
|
52 |
+
|
53 |
+
if (ref_idx + step) <= seq_len:
|
54 |
+
ref_e = ref_idx + step
|
55 |
+
else:
|
56 |
+
continue
|
57 |
+
|
58 |
+
for idx in range(ref_idx, ref_e):
|
59 |
+
im_path = osp.join(root, seq_name, "color", all_img_names[idx])
|
60 |
+
depth_path = osp.join(
|
61 |
+
root, seq_name, "depth", all_img_names[idx][:-3] + "png"
|
62 |
+
)
|
63 |
+
|
64 |
+
depth = depth_read(depth_path)
|
65 |
+
disp = depth
|
66 |
+
|
67 |
+
video_depths.append(disp)
|
68 |
+
video_imgs.append(np.array(Image.open(im_path)))
|
69 |
+
|
70 |
+
disp_video = np.array(video_depths)[:, None]
|
71 |
+
img_video = np.array(video_imgs)[..., 0:3]
|
72 |
+
|
73 |
+
disp_video = disp_video[:, :, 8:-8, 11:-11]
|
74 |
+
img_video = img_video[:, 8:-8, 11:-11, :]
|
75 |
+
|
76 |
+
data_root = saved_rgb_dir + datatset_name
|
77 |
+
disp_root = saved_disp_dir + datatset_name
|
78 |
+
os.makedirs(data_root, exist_ok=True)
|
79 |
+
os.makedirs(disp_root, exist_ok=True)
|
80 |
+
|
81 |
+
img_video_dir = data_root
|
82 |
+
disp_video_dir = disp_root
|
83 |
+
|
84 |
+
img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
|
85 |
+
disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
|
86 |
+
|
87 |
+
imageio.mimsave(
|
88 |
+
img_video_path, img_video, fps=15, quality=9, macro_block_size=1
|
89 |
+
)
|
90 |
+
np.savez(disp_video_path, disparity=disp_video)
|
91 |
+
|
92 |
+
sample = {}
|
93 |
+
sample["filepath_left"] = os.path.join(
|
94 |
+
f"{datatset_name}/{seq_name}_rgb_left.mp4"
|
95 |
+
)
|
96 |
+
sample["filepath_disparity"] = os.path.join(
|
97 |
+
f"{datatset_name}/{seq_name}_disparity.npz"
|
98 |
+
)
|
99 |
+
|
100 |
+
all_samples.append(sample)
|
101 |
+
|
102 |
+
filename_ = csv_save_path
|
103 |
+
os.makedirs(os.path.dirname(filename_), exist_ok=True)
|
104 |
+
fields = ["filepath_left", "filepath_disparity"]
|
105 |
+
with open(filename_, "w") as csvfile:
|
106 |
+
writer = csv.DictWriter(csvfile, fieldnames=fields)
|
107 |
+
writer.writeheader()
|
108 |
+
writer.writerows(all_samples)
|
109 |
+
|
110 |
+
print(f"{filename_} has been saved.")
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
extract_scannet(
|
115 |
+
root="path/to/ScanNet_v2/raw/scans_test",
|
116 |
+
saved_rgb_dir="./benchmark/datasets/",
|
117 |
+
saved_disp_dir="./benchmark/datasets/",
|
118 |
+
csv_save_path=f"./benchmark/datasets/scannet.csv",
|
119 |
+
sample_len=-1,
|
120 |
+
datatset_name="scannet",
|
121 |
+
scene_number=100,
|
122 |
+
scene_frames_len=90 * 3,
|
123 |
+
stride=3,
|
124 |
+
)
|
benchmark/dataset_extract/dataset_extract_sintel.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# # Data loading based on https://github.com/NVIDIA/flownet2-pytorch
|
7 |
+
|
8 |
+
|
9 |
+
import os
|
10 |
+
import numpy as np
|
11 |
+
import os.path as osp
|
12 |
+
from PIL import Image
|
13 |
+
from tqdm import tqdm
|
14 |
+
import csv
|
15 |
+
import imageio
|
16 |
+
|
17 |
+
|
18 |
+
# Check for endianness, based on Daniel Scharstein's optical flow code.
|
19 |
+
# Using little-endian architecture, these two should be equal.
|
20 |
+
TAG_FLOAT = 202021.25
|
21 |
+
TAG_CHAR = "PIEH"
|
22 |
+
|
23 |
+
|
24 |
+
def depth_read(filename):
|
25 |
+
"""Read depth data from file, return as numpy array."""
|
26 |
+
f = open(filename, "rb")
|
27 |
+
check = np.fromfile(f, dtype=np.float32, count=1)[0]
|
28 |
+
assert (
|
29 |
+
check == TAG_FLOAT
|
30 |
+
), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
|
31 |
+
TAG_FLOAT, check
|
32 |
+
)
|
33 |
+
width = np.fromfile(f, dtype=np.int32, count=1)[0]
|
34 |
+
height = np.fromfile(f, dtype=np.int32, count=1)[0]
|
35 |
+
size = width * height
|
36 |
+
assert (
|
37 |
+
width > 0 and height > 0 and size > 1 and size < 100000000
|
38 |
+
), " depth_read:: Wrong input size (width = {0}, height = {1}).".format(
|
39 |
+
width, height
|
40 |
+
)
|
41 |
+
depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
|
42 |
+
return depth
|
43 |
+
|
44 |
+
|
45 |
+
def extract_sintel(
|
46 |
+
root,
|
47 |
+
depth_root,
|
48 |
+
sample_len=-1,
|
49 |
+
csv_save_path="",
|
50 |
+
datatset_name="",
|
51 |
+
saved_rgb_dir="",
|
52 |
+
saved_disp_dir="",
|
53 |
+
):
|
54 |
+
scenes_names = os.listdir(root)
|
55 |
+
all_samples = []
|
56 |
+
for i, seq_name in enumerate(tqdm(scenes_names)):
|
57 |
+
all_img_names = os.listdir(os.path.join(root, seq_name))
|
58 |
+
all_img_names = [x for x in all_img_names if x.endswith(".png")]
|
59 |
+
all_img_names.sort()
|
60 |
+
all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
|
61 |
+
|
62 |
+
seq_len = len(all_img_names)
|
63 |
+
step = sample_len if sample_len > 0 else seq_len
|
64 |
+
|
65 |
+
for ref_idx in range(0, seq_len, step):
|
66 |
+
print(f"Progress: {seq_name}, {ref_idx // step} / {seq_len // step}")
|
67 |
+
|
68 |
+
video_imgs = []
|
69 |
+
video_depths = []
|
70 |
+
|
71 |
+
if (ref_idx + step) <= seq_len:
|
72 |
+
ref_e = ref_idx + step
|
73 |
+
else:
|
74 |
+
continue
|
75 |
+
|
76 |
+
for idx in range(ref_idx, ref_e):
|
77 |
+
im_path = osp.join(root, seq_name, all_img_names[idx])
|
78 |
+
depth_path = osp.join(
|
79 |
+
depth_root, seq_name, all_img_names[idx][:-3] + "dpt"
|
80 |
+
)
|
81 |
+
|
82 |
+
depth = depth_read(depth_path)
|
83 |
+
disp = depth
|
84 |
+
|
85 |
+
video_depths.append(disp)
|
86 |
+
video_imgs.append(np.array(Image.open(im_path)))
|
87 |
+
|
88 |
+
disp_video = np.array(video_depths)[:, None]
|
89 |
+
img_video = np.array(video_imgs)[..., 0:3]
|
90 |
+
|
91 |
+
data_root = saved_rgb_dir + datatset_name
|
92 |
+
disp_root = saved_disp_dir + datatset_name
|
93 |
+
os.makedirs(data_root, exist_ok=True)
|
94 |
+
os.makedirs(disp_root, exist_ok=True)
|
95 |
+
|
96 |
+
img_video_dir = data_root
|
97 |
+
disp_video_dir = disp_root
|
98 |
+
|
99 |
+
img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
|
100 |
+
disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
|
101 |
+
|
102 |
+
imageio.mimsave(
|
103 |
+
img_video_path, img_video, fps=15, quality=10, macro_block_size=1
|
104 |
+
)
|
105 |
+
np.savez(disp_video_path, disparity=disp_video)
|
106 |
+
|
107 |
+
sample = {}
|
108 |
+
sample["filepath_left"] = os.path.join(
|
109 |
+
f"{datatset_name}/{seq_name}_rgb_left.mp4"
|
110 |
+
)
|
111 |
+
sample["filepath_disparity"] = os.path.join(
|
112 |
+
f"{datatset_name}/{seq_name}_disparity.npz"
|
113 |
+
)
|
114 |
+
|
115 |
+
all_samples.append(sample)
|
116 |
+
|
117 |
+
filename_ = csv_save_path
|
118 |
+
os.makedirs(os.path.dirname(filename_), exist_ok=True)
|
119 |
+
fields = ["filepath_left", "filepath_disparity"]
|
120 |
+
with open(filename_, "w") as csvfile:
|
121 |
+
writer = csv.DictWriter(csvfile, fieldnames=fields)
|
122 |
+
writer.writeheader()
|
123 |
+
writer.writerows(all_samples)
|
124 |
+
|
125 |
+
print(f"{filename_} has been saved.")
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
extract_sintel(
|
130 |
+
root="path/to/Sintel-Depth/training_image/clean",
|
131 |
+
depth_root="path/to/Sintel-Depth/MPI-Sintel-depth-training-20150305/training/depth",
|
132 |
+
saved_rgb_dir="./benchmark/datasets/",
|
133 |
+
saved_disp_dir="./benchmark/datasets/",
|
134 |
+
csv_save_path=f"./benchmark/datasets/sintel.csv",
|
135 |
+
sample_len=-1,
|
136 |
+
datatset_name="sintel",
|
137 |
+
)
|
benchmark/demo.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
set -x
|
3 |
+
set -e
|
4 |
+
|
5 |
+
test_case=$1
|
6 |
+
gpu_id=$2
|
7 |
+
process_length=$3
|
8 |
+
saved_root=$4
|
9 |
+
saved_dataset_folder=$5
|
10 |
+
overlap=$6
|
11 |
+
dataset=$7
|
12 |
+
|
13 |
+
CUDA_VISIBLE_DEVICES=${gpu_id} PYTHONPATH=. python run.py \
|
14 |
+
--video-path ${test_case} \
|
15 |
+
--save-folder ${saved_root}/${saved_dataset_folder} \
|
16 |
+
--process-length ${process_length} \
|
17 |
+
--dataset ${dataset} \
|
18 |
+
--overlap ${overlap}
|
benchmark/eval/eval.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import csv
|
6 |
+
from metric import *
|
7 |
+
import metric
|
8 |
+
import argparse
|
9 |
+
from tqdm import tqdm
|
10 |
+
import json
|
11 |
+
|
12 |
+
|
13 |
+
device = 'cuda'
|
14 |
+
eval_metrics = [
|
15 |
+
"abs_relative_difference",
|
16 |
+
"rmse_linear",
|
17 |
+
"delta1_acc",
|
18 |
+
# "squared_relative_difference",
|
19 |
+
# "rmse_log",
|
20 |
+
# "log10",
|
21 |
+
# "delta2_acc",
|
22 |
+
# "delta3_acc",
|
23 |
+
# "i_rmse",
|
24 |
+
# "silog_rmse",
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
def depth2disparity(depth, return_mask=False):
|
29 |
+
if isinstance(depth, torch.Tensor):
|
30 |
+
disparity = torch.zeros_like(depth)
|
31 |
+
elif isinstance(depth, np.ndarray):
|
32 |
+
disparity = np.zeros_like(depth)
|
33 |
+
non_negtive_mask = depth > 0
|
34 |
+
disparity[non_negtive_mask] = 1.0 / depth[non_negtive_mask]
|
35 |
+
if return_mask:
|
36 |
+
return disparity, non_negtive_mask
|
37 |
+
else:
|
38 |
+
return disparity
|
39 |
+
|
40 |
+
|
41 |
+
def resize_images(images, new_size):
|
42 |
+
resized_images = np.empty(
|
43 |
+
(images.shape[0], new_size[0], new_size[1], images.shape[3])
|
44 |
+
)
|
45 |
+
|
46 |
+
for i, image in enumerate(images):
|
47 |
+
if image.shape[2]==1:
|
48 |
+
resized_images[i] = cv2.resize(image, (new_size[1], new_size[0]))[..., None]
|
49 |
+
else:
|
50 |
+
resized_images[i] = cv2.resize(image, (new_size[1], new_size[0]))
|
51 |
+
|
52 |
+
return resized_images
|
53 |
+
|
54 |
+
|
55 |
+
def eval_single(
|
56 |
+
pred_disp_path,
|
57 |
+
gt_disp_path,
|
58 |
+
seq_len=98,
|
59 |
+
domain='depth',
|
60 |
+
method_type="ours",
|
61 |
+
dataset_max_depth="70"
|
62 |
+
):
|
63 |
+
# load data
|
64 |
+
gt_disp = np.load(gt_disp_path)['disparity'] \
|
65 |
+
if 'disparity' in np.load(gt_disp_path).files else \
|
66 |
+
np.load(gt_disp_path)['arr_0'] # (t, 1, h, w)
|
67 |
+
|
68 |
+
if method_type=="ours":
|
69 |
+
pred_disp = np.load(pred_disp_path)['depth'] # (t, h, w)
|
70 |
+
if method_type=="depth_anything":
|
71 |
+
pred_disp = np.load(pred_disp_path)['disparity'] # (t, h, w)
|
72 |
+
|
73 |
+
# seq_len
|
74 |
+
if pred_disp.shape[0] < seq_len:
|
75 |
+
seq_len = pred_disp.shape[0]
|
76 |
+
|
77 |
+
# preprocess
|
78 |
+
pred_disp = resize_images(pred_disp[..., None], (gt_disp.shape[-2], gt_disp.shape[-1])) # (t, h, w)
|
79 |
+
pred_disp = pred_disp[..., 0] # (t, h, w)
|
80 |
+
pred_disp = pred_disp[:seq_len]
|
81 |
+
gt_disp = gt_disp[:seq_len, 0] # (t, h, w)
|
82 |
+
|
83 |
+
# valid mask
|
84 |
+
valid_mask = np.logical_and(
|
85 |
+
(gt_disp > 1e-3),
|
86 |
+
(gt_disp < dataset_max_depth)
|
87 |
+
)
|
88 |
+
pred_disp = np.clip(pred_disp, a_min=1e-3, a_max=None)
|
89 |
+
pred_disp_masked = pred_disp[valid_mask].reshape((-1, 1))
|
90 |
+
|
91 |
+
# choose evaluation domain
|
92 |
+
DOMAIN = domain
|
93 |
+
if DOMAIN=='disp':
|
94 |
+
# align in real disp, calc in disp
|
95 |
+
gt_disp_maksed = gt_disp[valid_mask].reshape((-1, 1)).astype(np.float64)
|
96 |
+
elif DOMAIN=='depth':
|
97 |
+
# align in disp = 1/depth, calc in depth
|
98 |
+
gt_disp_maksed = 1. / (gt_disp[valid_mask].reshape((-1, 1)).astype(np.float64) + 1e-8)
|
99 |
+
else:
|
100 |
+
pass
|
101 |
+
|
102 |
+
|
103 |
+
# calc scale and shift
|
104 |
+
_ones = np.ones_like(pred_disp_masked)
|
105 |
+
A = np.concatenate([pred_disp_masked, _ones], axis=-1)
|
106 |
+
X = np.linalg.lstsq(A, gt_disp_maksed, rcond=None)[0]
|
107 |
+
scale, shift = X # gt = scale * pred + shift
|
108 |
+
|
109 |
+
# align
|
110 |
+
aligned_pred = scale * pred_disp + shift
|
111 |
+
aligned_pred = np.clip(aligned_pred, a_min=1e-3, a_max=None)
|
112 |
+
|
113 |
+
|
114 |
+
# align in real disp, calc in disp
|
115 |
+
if DOMAIN=='disp':
|
116 |
+
pred_depth = aligned_pred
|
117 |
+
gt_depth = gt_disp
|
118 |
+
# align in disp = 1/depth, calc in depth
|
119 |
+
elif DOMAIN=='depth':
|
120 |
+
pred_depth = depth2disparity(aligned_pred)
|
121 |
+
gt_depth = gt_disp
|
122 |
+
else:
|
123 |
+
pass
|
124 |
+
|
125 |
+
# metric evaluation, clip to dataset min max
|
126 |
+
pred_depth = np.clip(
|
127 |
+
pred_depth, a_min=1e-3, a_max=dataset_max_depth
|
128 |
+
)
|
129 |
+
|
130 |
+
# evaluate metric
|
131 |
+
sample_metric = []
|
132 |
+
metric_funcs = [getattr(metric, _met) for _met in eval_metrics]
|
133 |
+
|
134 |
+
# Evaluate
|
135 |
+
sample_metric = []
|
136 |
+
pred_depth_ts = torch.from_numpy(pred_depth).to(device)
|
137 |
+
gt_depth_ts = torch.from_numpy(gt_depth).to(device)
|
138 |
+
valid_mask_ts = torch.from_numpy(valid_mask).to(device)
|
139 |
+
|
140 |
+
n = valid_mask.sum((-1, -2))
|
141 |
+
valid_frame = (n > 0)
|
142 |
+
pred_depth_ts = pred_depth_ts[valid_frame]
|
143 |
+
gt_depth_ts = gt_depth_ts[valid_frame]
|
144 |
+
valid_mask_ts = valid_mask_ts[valid_frame]
|
145 |
+
|
146 |
+
for met_func in metric_funcs:
|
147 |
+
_metric_name = met_func.__name__
|
148 |
+
_metric = met_func(pred_depth_ts, gt_depth_ts, valid_mask_ts).item()
|
149 |
+
sample_metric.append(_metric)
|
150 |
+
|
151 |
+
return sample_metric
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
if __name__=="__main__":
|
156 |
+
parser = argparse.ArgumentParser()
|
157 |
+
|
158 |
+
parser.add_argument(
|
159 |
+
"--seq_len",
|
160 |
+
type=int,
|
161 |
+
default=50,
|
162 |
+
help="Max video frame length for evaluation."
|
163 |
+
)
|
164 |
+
|
165 |
+
parser.add_argument(
|
166 |
+
"--domain",
|
167 |
+
type=str,
|
168 |
+
default="depth",
|
169 |
+
choices=["depth", "disp"],
|
170 |
+
help="Domain of metric calculation."
|
171 |
+
)
|
172 |
+
|
173 |
+
parser.add_argument(
|
174 |
+
"--method_type",
|
175 |
+
type=str,
|
176 |
+
default="ours",
|
177 |
+
choices=["ours", "depth_anything"],
|
178 |
+
help="Choose the methods."
|
179 |
+
)
|
180 |
+
|
181 |
+
parser.add_argument(
|
182 |
+
"--dataset_max_depth",
|
183 |
+
type=int,
|
184 |
+
default=70,
|
185 |
+
help="Dataset max depth clip."
|
186 |
+
)
|
187 |
+
|
188 |
+
parser.add_argument(
|
189 |
+
"--pred_disp_root",
|
190 |
+
type=str,
|
191 |
+
default="./demo_output",
|
192 |
+
help="Predicted output directory."
|
193 |
+
)
|
194 |
+
|
195 |
+
parser.add_argument(
|
196 |
+
"--gt_disp_root",
|
197 |
+
type=str,
|
198 |
+
required=True,
|
199 |
+
help="GT depth directory."
|
200 |
+
)
|
201 |
+
|
202 |
+
parser.add_argument(
|
203 |
+
"--dataset",
|
204 |
+
type=str,
|
205 |
+
required=True,
|
206 |
+
help="Choose the datasets."
|
207 |
+
)
|
208 |
+
|
209 |
+
parser.add_argument(
|
210 |
+
"--meta_path",
|
211 |
+
type=str,
|
212 |
+
required=True,
|
213 |
+
help="Path of test dataset csv file."
|
214 |
+
)
|
215 |
+
|
216 |
+
|
217 |
+
args = parser.parse_args()
|
218 |
+
|
219 |
+
SEQ_LEN = args.seq_len
|
220 |
+
method_type = args.method_type
|
221 |
+
if method_type == "ours":
|
222 |
+
pred_disp_root = os.path.join(args.pred_disp_root, f'results_{args.dataset}')
|
223 |
+
else:
|
224 |
+
# pred_disp_root = args.pred_disp_root
|
225 |
+
pred_disp_root = os.path.join(args.pred_disp_root, f'results_{args.dataset}')
|
226 |
+
domain = args.domain
|
227 |
+
dataset_max_depth = args.dataset_max_depth
|
228 |
+
saved_json_path = os.path.join(args.pred_disp_root, f"results_{args.dataset}.json")
|
229 |
+
|
230 |
+
meta_path = args.meta_path
|
231 |
+
|
232 |
+
assert method_type in ["depth_anything", "ours"], "Invalid method type, must be in ['depth_anything', 'ours']"
|
233 |
+
assert domain in ["depth", "disp"], "Invalid domain type, must be in ['depth', 'disp']"
|
234 |
+
|
235 |
+
with open(meta_path, mode="r", encoding="utf-8") as csvfile:
|
236 |
+
csv_reader = csv.DictReader(csvfile)
|
237 |
+
samples = list(csv_reader)
|
238 |
+
|
239 |
+
# iterate all cases
|
240 |
+
results_all = []
|
241 |
+
for i, sample in enumerate(tqdm(samples)):
|
242 |
+
gt_disp_path = os.path.join(args.gt_disp_root, samples[i]['filepath_disparity'])
|
243 |
+
if method_type=="ours":
|
244 |
+
pred_disp_path = os.path.join(pred_disp_root, samples[i]['filepath_disparity'])
|
245 |
+
pred_disp_path = pred_disp_path.replace("disparity", "rgb_left")
|
246 |
+
|
247 |
+
if method_type=="depth_anything":
|
248 |
+
pred_disp_path = os.path.join(pred_disp_root, samples[i]['filepath_disparity'])
|
249 |
+
pred_disp_path = pred_disp_path.replace("disparity", "rgb_left_depth")
|
250 |
+
|
251 |
+
results_single = eval_single(
|
252 |
+
pred_disp_path,
|
253 |
+
gt_disp_path,
|
254 |
+
seq_len=SEQ_LEN,
|
255 |
+
domain=domain,
|
256 |
+
method_type=method_type,
|
257 |
+
dataset_max_depth=dataset_max_depth
|
258 |
+
)
|
259 |
+
|
260 |
+
results_all.append(results_single)
|
261 |
+
|
262 |
+
# avarage
|
263 |
+
final_results = np.array(results_all)
|
264 |
+
final_results_mean = np.mean(final_results, axis=0)
|
265 |
+
print("")
|
266 |
+
|
267 |
+
# save mean to json
|
268 |
+
result_dict = { 'name': method_type }
|
269 |
+
for i, metric in enumerate(eval_metrics):
|
270 |
+
result_dict[metric] = final_results_mean[i]
|
271 |
+
print(f"{metric}: {final_results_mean[i]:04f}")
|
272 |
+
|
273 |
+
# save each case to json
|
274 |
+
for i, results in enumerate(results_all):
|
275 |
+
result_dict[samples[i]['filepath_disparity']] = results
|
276 |
+
|
277 |
+
# write json
|
278 |
+
with open(saved_json_path, 'w') as f:
|
279 |
+
json.dump(result_dict, f, indent=4)
|
280 |
+
print("")
|
281 |
+
print(f"Evaluation results json are saved to {saved_json_path}")
|
282 |
+
|
benchmark/eval/eval.sh
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
set -x
|
3 |
+
set -e
|
4 |
+
|
5 |
+
pred_disp_root=/path/to/saved/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] prediction
|
6 |
+
gt_disp_root=/path/to/gt_depth/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] ground truth
|
7 |
+
|
8 |
+
# eval sintel
|
9 |
+
python benchmark/eval/eval.py \
|
10 |
+
--meta_path ./eval/csv/meta_sintel.csv \
|
11 |
+
--dataset_max_depth 70 \
|
12 |
+
--dataset sintel \
|
13 |
+
--seq_len 50 \
|
14 |
+
--pred_disp_root ${pred_disp_root} \
|
15 |
+
--gt_disp_root ${gt_disp_root} \
|
16 |
+
|
17 |
+
# eval scannet
|
18 |
+
python benchmark/eval/eval.py \
|
19 |
+
--meta_path ./eval/csv/meta_scannet_test.csv \
|
20 |
+
--dataset_max_depth 10 \
|
21 |
+
--dataset scannet \
|
22 |
+
--seq_len 90 \
|
23 |
+
--pred_disp_root ${pred_disp_root} \
|
24 |
+
--gt_disp_root ${gt_disp_root} \
|
25 |
+
|
26 |
+
# eval kitti
|
27 |
+
python benchmark/eval/eval.py \
|
28 |
+
--meta_path ./eval/csv/meta_kitti_val.csv \
|
29 |
+
--dataset_max_depth 80 \
|
30 |
+
--dataset kitti \
|
31 |
+
--seq_len 110 \
|
32 |
+
--pred_disp_root ${pred_disp_root} \
|
33 |
+
--gt_disp_root ${gt_disp_root} \
|
34 |
+
|
35 |
+
# eval bonn
|
36 |
+
python benchmark/eval/eval.py \
|
37 |
+
--meta_path ./eval/csv/meta_bonn.csv \
|
38 |
+
--dataset_max_depth 10 \
|
39 |
+
--dataset bonn \
|
40 |
+
--seq_len 110 \
|
41 |
+
--pred_disp_root ${pred_disp_root} \
|
42 |
+
--gt_disp_root ${gt_disp_root} \
|
43 |
+
|
44 |
+
# eval nyu
|
45 |
+
python benchmark/eval/eval.py \
|
46 |
+
--meta_path ./eval/csv/meta_nyu_test.csv \
|
47 |
+
--dataset_max_depth 10 \
|
48 |
+
--dataset nyu \
|
49 |
+
--seq_len 1 \
|
50 |
+
--pred_disp_root ${pred_disp_root} \
|
51 |
+
--gt_disp_root ${gt_disp_root} \
|
benchmark/eval/metric.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def abs_relative_difference(output, target, valid_mask=None):
|
5 |
+
actual_output = output
|
6 |
+
actual_target = target
|
7 |
+
abs_relative_diff = torch.abs(actual_output - actual_target) / actual_target
|
8 |
+
if valid_mask is not None:
|
9 |
+
abs_relative_diff[~valid_mask] = 0
|
10 |
+
n = valid_mask.sum((-1, -2))
|
11 |
+
else:
|
12 |
+
n = output.shape[-1] * output.shape[-2]
|
13 |
+
abs_relative_diff = torch.sum(abs_relative_diff, (-1, -2)) / n
|
14 |
+
return abs_relative_diff.mean()
|
15 |
+
|
16 |
+
|
17 |
+
def squared_relative_difference(output, target, valid_mask=None):
|
18 |
+
actual_output = output
|
19 |
+
actual_target = target
|
20 |
+
square_relative_diff = (
|
21 |
+
torch.pow(torch.abs(actual_output - actual_target), 2) / actual_target
|
22 |
+
)
|
23 |
+
if valid_mask is not None:
|
24 |
+
square_relative_diff[~valid_mask] = 0
|
25 |
+
n = valid_mask.sum((-1, -2))
|
26 |
+
else:
|
27 |
+
n = output.shape[-1] * output.shape[-2]
|
28 |
+
square_relative_diff = torch.sum(square_relative_diff, (-1, -2)) / n
|
29 |
+
return square_relative_diff.mean()
|
30 |
+
|
31 |
+
|
32 |
+
def rmse_linear(output, target, valid_mask=None):
|
33 |
+
actual_output = output
|
34 |
+
actual_target = target
|
35 |
+
diff = actual_output - actual_target
|
36 |
+
if valid_mask is not None:
|
37 |
+
diff[~valid_mask] = 0
|
38 |
+
n = valid_mask.sum((-1, -2))
|
39 |
+
else:
|
40 |
+
n = output.shape[-1] * output.shape[-2]
|
41 |
+
diff2 = torch.pow(diff, 2)
|
42 |
+
mse = torch.sum(diff2, (-1, -2)) / n
|
43 |
+
rmse = torch.sqrt(mse)
|
44 |
+
return rmse.mean()
|
45 |
+
|
46 |
+
|
47 |
+
def rmse_log(output, target, valid_mask=None):
|
48 |
+
diff = torch.log(output) - torch.log(target)
|
49 |
+
if valid_mask is not None:
|
50 |
+
diff[~valid_mask] = 0
|
51 |
+
n = valid_mask.sum((-1, -2))
|
52 |
+
else:
|
53 |
+
n = output.shape[-1] * output.shape[-2]
|
54 |
+
diff2 = torch.pow(diff, 2)
|
55 |
+
mse = torch.sum(diff2, (-1, -2)) / n # [B]
|
56 |
+
rmse = torch.sqrt(mse)
|
57 |
+
return rmse.mean()
|
58 |
+
|
59 |
+
|
60 |
+
def log10(output, target, valid_mask=None):
|
61 |
+
if valid_mask is not None:
|
62 |
+
diff = torch.abs(
|
63 |
+
torch.log10(output[valid_mask]) - torch.log10(target[valid_mask])
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
diff = torch.abs(torch.log10(output) - torch.log10(target))
|
67 |
+
return diff.mean()
|
68 |
+
|
69 |
+
|
70 |
+
# adapt from: https://github.com/imran3180/depth-map-prediction/blob/master/main.py
|
71 |
+
def threshold_percentage(output, target, threshold_val, valid_mask=None):
|
72 |
+
d1 = output / target
|
73 |
+
d2 = target / output
|
74 |
+
max_d1_d2 = torch.max(d1, d2)
|
75 |
+
zero = torch.zeros(*output.shape)
|
76 |
+
one = torch.ones(*output.shape)
|
77 |
+
bit_mat = torch.where(max_d1_d2.cpu() < threshold_val, one, zero)
|
78 |
+
if valid_mask is not None:
|
79 |
+
bit_mat[~valid_mask] = 0
|
80 |
+
n = valid_mask.sum((-1, -2))
|
81 |
+
else:
|
82 |
+
n = output.shape[-1] * output.shape[-2]
|
83 |
+
count_mat = torch.sum(bit_mat, (-1, -2))
|
84 |
+
threshold_mat = count_mat / n.cpu()
|
85 |
+
return threshold_mat.mean()
|
86 |
+
|
87 |
+
|
88 |
+
def delta1_acc(pred, gt, valid_mask):
|
89 |
+
return threshold_percentage(pred, gt, 1.25, valid_mask)
|
90 |
+
|
91 |
+
|
92 |
+
def delta2_acc(pred, gt, valid_mask):
|
93 |
+
return threshold_percentage(pred, gt, 1.25**2, valid_mask)
|
94 |
+
|
95 |
+
|
96 |
+
def delta3_acc(pred, gt, valid_mask):
|
97 |
+
return threshold_percentage(pred, gt, 1.25**3, valid_mask)
|
98 |
+
|
99 |
+
|
100 |
+
def i_rmse(output, target, valid_mask=None):
|
101 |
+
output_inv = 1.0 / output
|
102 |
+
target_inv = 1.0 / target
|
103 |
+
diff = output_inv - target_inv
|
104 |
+
if valid_mask is not None:
|
105 |
+
diff[~valid_mask] = 0
|
106 |
+
n = valid_mask.sum((-1, -2))
|
107 |
+
else:
|
108 |
+
n = output.shape[-1] * output.shape[-2]
|
109 |
+
diff2 = torch.pow(diff, 2)
|
110 |
+
mse = torch.sum(diff2, (-1, -2)) / n # [B]
|
111 |
+
rmse = torch.sqrt(mse)
|
112 |
+
return rmse.mean()
|
113 |
+
|
114 |
+
|
115 |
+
def silog_rmse(depth_pred, depth_gt, valid_mask=None):
|
116 |
+
diff = torch.log(depth_pred) - torch.log(depth_gt)
|
117 |
+
if valid_mask is not None:
|
118 |
+
diff[~valid_mask] = 0
|
119 |
+
n = valid_mask.sum((-1, -2))
|
120 |
+
else:
|
121 |
+
n = depth_gt.shape[-2] * depth_gt.shape[-1]
|
122 |
+
|
123 |
+
diff2 = torch.pow(diff, 2)
|
124 |
+
|
125 |
+
first_term = torch.sum(diff2, (-1, -2)) / n
|
126 |
+
second_term = torch.pow(torch.sum(diff, (-1, -2)), 2) / (n**2)
|
127 |
+
loss = torch.sqrt(torch.mean(first_term - second_term)) * 100
|
128 |
+
return loss
|
benchmark/infer/infer.sh
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
set -x
|
3 |
+
set -e
|
4 |
+
|
5 |
+
input_rgb_root=/path/to/input/RGB/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] input RGB
|
6 |
+
saved_root=/path/to/saved/root_directory # The parent directory that saving [sintel, scannet, KITTI, bonn, NYUv2] prediction
|
7 |
+
gpus=0,1,2,3 # Using 4 GPU, you can adjust it according to your device
|
8 |
+
|
9 |
+
|
10 |
+
# infer sintel
|
11 |
+
python benchmark/infer/infer_batch.py \
|
12 |
+
--meta_path ./eval/csv/meta_sintel.csv \
|
13 |
+
--saved_root ${saved_root} \
|
14 |
+
--saved_dataset_folder results_sintel \
|
15 |
+
--process_length 50 \
|
16 |
+
--gpus ${gpus} \
|
17 |
+
--dataset sintel \
|
18 |
+
|
19 |
+
# infer scannet
|
20 |
+
python benchmark/infer/infer_batch.py \
|
21 |
+
--meta_path ./eval/csv/meta_scannet_test.csv \
|
22 |
+
--saved_root ${saved_root} \
|
23 |
+
--saved_dataset_folder results_scannet \
|
24 |
+
--process_length 90 \
|
25 |
+
--gpus ${gpus} \
|
26 |
+
--dataset scannet \
|
27 |
+
|
28 |
+
# infer kitti
|
29 |
+
python benchmark/infer/infer_batch.py \
|
30 |
+
--meta_path ./eval/csv/meta_kitti_val.csv \
|
31 |
+
--saved_root ${saved_root} \
|
32 |
+
--saved_dataset_folder results_kitti \
|
33 |
+
--process_length 110 \
|
34 |
+
--gpus ${gpus} \
|
35 |
+
--dataset kitti \
|
36 |
+
|
37 |
+
# infer bonn
|
38 |
+
python benchmark/infer/infer_batch.py \
|
39 |
+
--meta_path ./eval/csv/meta_bonn.csv \
|
40 |
+
--saved_root ${saved_root} \
|
41 |
+
--saved_dataset_folder results_bonn \
|
42 |
+
--input_rgb_root ${input_rgb_root} \
|
43 |
+
--process_length 110 \
|
44 |
+
--gpus ${gpus} \
|
45 |
+
--dataset bonn \
|
46 |
+
|
47 |
+
# infer nyu
|
48 |
+
python benchmark/infer/infer_batch.py \
|
49 |
+
--meta_path ./eval/csv/meta_nyu_test.csv \
|
50 |
+
--saved_root ${saved_root} \
|
51 |
+
--saved_dataset_folder results_nyu \
|
52 |
+
--process_length 1 \
|
53 |
+
--gpus ${gpus} \
|
54 |
+
--overlap 0 \
|
55 |
+
--dataset nyu \
|
benchmark/infer/infer_batch.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import multiprocessing as mp
|
3 |
+
import csv
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
|
7 |
+
def process_video(video_path, gpu_id, save_folder, args):
|
8 |
+
os.system(f'sh ./benchmark/demo.sh {video_path} {gpu_id} {int(args.process_length)} {args.saved_root} {save_folder} {args.overlap} {args.dataset}')
|
9 |
+
|
10 |
+
if __name__ == '__main__':
|
11 |
+
|
12 |
+
parser = argparse.ArgumentParser()
|
13 |
+
|
14 |
+
parser.add_argument('--meta_path', type=str)
|
15 |
+
parser.add_argument('--saved_dataset_folder', type=str)
|
16 |
+
parser.add_argument('--saved_root', type=str, default="./output")
|
17 |
+
parser.add_argument('--input_rgb_root', type=str)
|
18 |
+
|
19 |
+
parser.add_argument('--process_length', type=int, default=110)
|
20 |
+
parser.add_argument('--gpus', type=str, default="0,1,2,3")
|
21 |
+
|
22 |
+
parser.add_argument('--overlap', type=int, default=1)
|
23 |
+
parser.add_argument('--dataset', type=str, default="open")
|
24 |
+
|
25 |
+
args = parser.parse_args()
|
26 |
+
gpus = args.gpus.strip().split(',')
|
27 |
+
|
28 |
+
with open(args.meta_path, mode="r", encoding="utf-8") as csvfile:
|
29 |
+
csv_reader = csv.DictReader(csvfile)
|
30 |
+
test_samples = list(csv_reader)
|
31 |
+
batch_size = len(gpus)
|
32 |
+
video_batches = [test_samples[i:i+batch_size] for i in range(0, len(test_samples), batch_size)]
|
33 |
+
print("gpus+++: ", gpus)
|
34 |
+
|
35 |
+
processes = []
|
36 |
+
for video_batch in video_batches:
|
37 |
+
for i, sample in enumerate(video_batch):
|
38 |
+
video_path = os.path.join(args.input_rgb_root, sample["filepath_left"])
|
39 |
+
save_folder = os.path.join(args.saved_dataset_folder, os.path.dirname(sample["filepath_left"]))
|
40 |
+
gpu_id = gpus[i % len(gpus)]
|
41 |
+
p = mp.Process(target=process_video, args=(video_path, gpu_id, save_folder, args))
|
42 |
+
p.start()
|
43 |
+
processes.append(p)
|
44 |
+
|
45 |
+
for p in processes:
|
46 |
+
p.join()
|