X-GAO commited on
Commit
916d528
·
unverified ·
1 Parent(s): fdc0182

[Add] dataset creation, infer, eval

Browse files
benchmark/__init__.py ADDED
File without changes
benchmark/csv/meta_bonn.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ filepath_left,filepath_disparity
2
+ bonn/rgbd_bonn_synchronous_rgb_left.mp4,bonn/rgbd_bonn_synchronous_disparity.npz
3
+ bonn/rgbd_bonn_person_tracking_rgb_left.mp4,bonn/rgbd_bonn_person_tracking_disparity.npz
4
+ bonn/rgbd_bonn_crowd2_rgb_left.mp4,bonn/rgbd_bonn_crowd2_disparity.npz
5
+ bonn/rgbd_bonn_crowd3_rgb_left.mp4,bonn/rgbd_bonn_crowd3_disparity.npz
6
+ bonn/rgbd_bonn_balloon2_rgb_left.mp4,bonn/rgbd_bonn_balloon2_disparity.npz
benchmark/csv/meta_kitti_val.csv ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath_left,filepath_disparity
2
+ KITTI/2011_09_28_drive_0037_sync_rgb_left.mp4,KITTI/2011_09_28_drive_0037_sync_disparity.npz
3
+ KITTI/2011_09_26_drive_0005_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0005_sync_disparity.npz
4
+ KITTI/2011_09_30_drive_0016_sync_rgb_left.mp4,KITTI/2011_09_30_drive_0016_sync_disparity.npz
5
+ KITTI/2011_09_26_drive_0079_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0079_sync_disparity.npz
6
+ KITTI/2011_09_26_drive_0020_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0020_sync_disparity.npz
7
+ KITTI/2011_09_26_drive_0095_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0095_sync_disparity.npz
8
+ KITTI/2011_10_03_drive_0047_sync_rgb_left.mp4,KITTI/2011_10_03_drive_0047_sync_disparity.npz
9
+ KITTI/2011_09_26_drive_0113_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0113_sync_disparity.npz
10
+ KITTI/2011_09_26_drive_0036_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0036_sync_disparity.npz
11
+ KITTI/2011_09_26_drive_0013_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0013_sync_disparity.npz
12
+ KITTI/2011_09_26_drive_0002_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0002_sync_disparity.npz
13
+ KITTI/2011_09_29_drive_0026_sync_rgb_left.mp4,KITTI/2011_09_29_drive_0026_sync_disparity.npz
14
+ KITTI/2011_09_26_drive_0023_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0023_sync_disparity.npz
benchmark/csv/meta_nyu_test.csv ADDED
@@ -0,0 +1,655 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath_left,filepath_disparity
2
+ NYUv2/test/kitchen_0004/rgb_0001_rgb_left.mp4,NYUv2/test/kitchen_0004/rgb_0001_disparity.npz
3
+ NYUv2/test/kitchen_0004/rgb_0002_rgb_left.mp4,NYUv2/test/kitchen_0004/rgb_0002_disparity.npz
4
+ NYUv2/test/office_0005/rgb_0009_rgb_left.mp4,NYUv2/test/office_0005/rgb_0009_disparity.npz
5
+ NYUv2/test/office_0007/rgb_0014_rgb_left.mp4,NYUv2/test/office_0007/rgb_0014_disparity.npz
6
+ NYUv2/test/office_0008/rgb_0015_rgb_left.mp4,NYUv2/test/office_0008/rgb_0015_disparity.npz
7
+ NYUv2/test/office_0008/rgb_0016_rgb_left.mp4,NYUv2/test/office_0008/rgb_0016_disparity.npz
8
+ NYUv2/test/office_0008/rgb_0017_rgb_left.mp4,NYUv2/test/office_0008/rgb_0017_disparity.npz
9
+ NYUv2/test/office_0008/rgb_0018_rgb_left.mp4,NYUv2/test/office_0008/rgb_0018_disparity.npz
10
+ NYUv2/test/office_0010/rgb_0021_rgb_left.mp4,NYUv2/test/office_0010/rgb_0021_disparity.npz
11
+ NYUv2/test/office_0013/rgb_0028_rgb_left.mp4,NYUv2/test/office_0013/rgb_0028_disparity.npz
12
+ NYUv2/test/office_0013/rgb_0029_rgb_left.mp4,NYUv2/test/office_0013/rgb_0029_disparity.npz
13
+ NYUv2/test/office_0013/rgb_0030_rgb_left.mp4,NYUv2/test/office_0013/rgb_0030_disparity.npz
14
+ NYUv2/test/office_0013/rgb_0031_rgb_left.mp4,NYUv2/test/office_0013/rgb_0031_disparity.npz
15
+ NYUv2/test/office_0013/rgb_0032_rgb_left.mp4,NYUv2/test/office_0013/rgb_0032_disparity.npz
16
+ NYUv2/test/office_0013/rgb_0033_rgb_left.mp4,NYUv2/test/office_0013/rgb_0033_disparity.npz
17
+ NYUv2/test/office_0013/rgb_0034_rgb_left.mp4,NYUv2/test/office_0013/rgb_0034_disparity.npz
18
+ NYUv2/test/office_0014/rgb_0035_rgb_left.mp4,NYUv2/test/office_0014/rgb_0035_disparity.npz
19
+ NYUv2/test/office_0014/rgb_0036_rgb_left.mp4,NYUv2/test/office_0014/rgb_0036_disparity.npz
20
+ NYUv2/test/office_0014/rgb_0037_rgb_left.mp4,NYUv2/test/office_0014/rgb_0037_disparity.npz
21
+ NYUv2/test/office_0014/rgb_0038_rgb_left.mp4,NYUv2/test/office_0014/rgb_0038_disparity.npz
22
+ NYUv2/test/office_0015/rgb_0039_rgb_left.mp4,NYUv2/test/office_0015/rgb_0039_disparity.npz
23
+ NYUv2/test/office_0015/rgb_0040_rgb_left.mp4,NYUv2/test/office_0015/rgb_0040_disparity.npz
24
+ NYUv2/test/office_0015/rgb_0041_rgb_left.mp4,NYUv2/test/office_0015/rgb_0041_disparity.npz
25
+ NYUv2/test/office_0015/rgb_0042_rgb_left.mp4,NYUv2/test/office_0015/rgb_0042_disparity.npz
26
+ NYUv2/test/office_0015/rgb_0043_rgb_left.mp4,NYUv2/test/office_0015/rgb_0043_disparity.npz
27
+ NYUv2/test/bathroom_0003/rgb_0046_rgb_left.mp4,NYUv2/test/bathroom_0003/rgb_0046_disparity.npz
28
+ NYUv2/test/bathroom_0004/rgb_0047_rgb_left.mp4,NYUv2/test/bathroom_0004/rgb_0047_disparity.npz
29
+ NYUv2/test/bedroom_0011/rgb_0056_rgb_left.mp4,NYUv2/test/bedroom_0011/rgb_0056_disparity.npz
30
+ NYUv2/test/bedroom_0011/rgb_0057_rgb_left.mp4,NYUv2/test/bedroom_0011/rgb_0057_disparity.npz
31
+ NYUv2/test/bedroom_0013/rgb_0059_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0059_disparity.npz
32
+ NYUv2/test/bedroom_0013/rgb_0060_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0060_disparity.npz
33
+ NYUv2/test/bedroom_0013/rgb_0061_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0061_disparity.npz
34
+ NYUv2/test/bedroom_0013/rgb_0062_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0062_disparity.npz
35
+ NYUv2/test/bedroom_0013/rgb_0063_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0063_disparity.npz
36
+ NYUv2/test/bedroom_0018/rgb_0076_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0076_disparity.npz
37
+ NYUv2/test/bedroom_0018/rgb_0077_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0077_disparity.npz
38
+ NYUv2/test/bedroom_0018/rgb_0078_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0078_disparity.npz
39
+ NYUv2/test/bedroom_0018/rgb_0079_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0079_disparity.npz
40
+ NYUv2/test/bookstore_0001/rgb_0084_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0084_disparity.npz
41
+ NYUv2/test/bookstore_0001/rgb_0085_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0085_disparity.npz
42
+ NYUv2/test/bookstore_0001/rgb_0086_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0086_disparity.npz
43
+ NYUv2/test/bookstore_0001/rgb_0087_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0087_disparity.npz
44
+ NYUv2/test/bookstore_0001/rgb_0088_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0088_disparity.npz
45
+ NYUv2/test/bookstore_0001/rgb_0089_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0089_disparity.npz
46
+ NYUv2/test/bookstore_0001/rgb_0090_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0090_disparity.npz
47
+ NYUv2/test/bookstore_0001/rgb_0091_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0091_disparity.npz
48
+ NYUv2/test/bookstore_0001/rgb_0117_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0117_disparity.npz
49
+ NYUv2/test/bookstore_0001/rgb_0118_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0118_disparity.npz
50
+ NYUv2/test/bookstore_0001/rgb_0119_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0119_disparity.npz
51
+ NYUv2/test/kitchen_0005/rgb_0125_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0125_disparity.npz
52
+ NYUv2/test/kitchen_0005/rgb_0126_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0126_disparity.npz
53
+ NYUv2/test/kitchen_0005/rgb_0127_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0127_disparity.npz
54
+ NYUv2/test/kitchen_0005/rgb_0128_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0128_disparity.npz
55
+ NYUv2/test/kitchen_0005/rgb_0129_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0129_disparity.npz
56
+ NYUv2/test/kitchen_0007/rgb_0131_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0131_disparity.npz
57
+ NYUv2/test/kitchen_0007/rgb_0132_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0132_disparity.npz
58
+ NYUv2/test/kitchen_0007/rgb_0133_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0133_disparity.npz
59
+ NYUv2/test/kitchen_0007/rgb_0134_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0134_disparity.npz
60
+ NYUv2/test/kitchen_0009/rgb_0137_rgb_left.mp4,NYUv2/test/kitchen_0009/rgb_0137_disparity.npz
61
+ NYUv2/test/living_room_0008/rgb_0153_rgb_left.mp4,NYUv2/test/living_room_0008/rgb_0153_disparity.npz
62
+ NYUv2/test/living_room_0008/rgb_0154_rgb_left.mp4,NYUv2/test/living_room_0008/rgb_0154_disparity.npz
63
+ NYUv2/test/living_room_0009/rgb_0155_rgb_left.mp4,NYUv2/test/living_room_0009/rgb_0155_disparity.npz
64
+ NYUv2/test/living_room_0013/rgb_0167_rgb_left.mp4,NYUv2/test/living_room_0013/rgb_0167_disparity.npz
65
+ NYUv2/test/living_room_0013/rgb_0168_rgb_left.mp4,NYUv2/test/living_room_0013/rgb_0168_disparity.npz
66
+ NYUv2/test/living_room_0014/rgb_0169_rgb_left.mp4,NYUv2/test/living_room_0014/rgb_0169_disparity.npz
67
+ NYUv2/test/bedroom_0003/rgb_0171_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0171_disparity.npz
68
+ NYUv2/test/bedroom_0003/rgb_0172_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0172_disparity.npz
69
+ NYUv2/test/bedroom_0003/rgb_0173_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0173_disparity.npz
70
+ NYUv2/test/bedroom_0003/rgb_0174_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0174_disparity.npz
71
+ NYUv2/test/bedroom_0003/rgb_0175_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0175_disparity.npz
72
+ NYUv2/test/bedroom_0003/rgb_0176_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0176_disparity.npz
73
+ NYUv2/test/bedroom_0005/rgb_0180_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0180_disparity.npz
74
+ NYUv2/test/bedroom_0005/rgb_0181_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0181_disparity.npz
75
+ NYUv2/test/bedroom_0005/rgb_0182_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0182_disparity.npz
76
+ NYUv2/test/bedroom_0006/rgb_0183_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0183_disparity.npz
77
+ NYUv2/test/bedroom_0006/rgb_0184_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0184_disparity.npz
78
+ NYUv2/test/bedroom_0006/rgb_0185_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0185_disparity.npz
79
+ NYUv2/test/bedroom_0006/rgb_0186_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0186_disparity.npz
80
+ NYUv2/test/bedroom_0006/rgb_0187_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0187_disparity.npz
81
+ NYUv2/test/bedroom_0006/rgb_0188_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0188_disparity.npz
82
+ NYUv2/test/bedroom_0007/rgb_0189_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0189_disparity.npz
83
+ NYUv2/test/bedroom_0007/rgb_0190_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0190_disparity.npz
84
+ NYUv2/test/bedroom_0007/rgb_0191_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0191_disparity.npz
85
+ NYUv2/test/bedroom_0007/rgb_0192_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0192_disparity.npz
86
+ NYUv2/test/bedroom_0007/rgb_0193_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0193_disparity.npz
87
+ NYUv2/test/kitchen_0002/rgb_0194_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0194_disparity.npz
88
+ NYUv2/test/kitchen_0002/rgb_0195_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0195_disparity.npz
89
+ NYUv2/test/kitchen_0002/rgb_0196_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0196_disparity.npz
90
+ NYUv2/test/kitchen_0002/rgb_0197_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0197_disparity.npz
91
+ NYUv2/test/kitchen_0002/rgb_0198_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0198_disparity.npz
92
+ NYUv2/test/kitchen_0002/rgb_0199_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0199_disparity.npz
93
+ NYUv2/test/kitchen_0002/rgb_0200_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0200_disparity.npz
94
+ NYUv2/test/kitchen_0002/rgb_0201_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0201_disparity.npz
95
+ NYUv2/test/kitchen_0002/rgb_0202_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0202_disparity.npz
96
+ NYUv2/test/living_room_0002/rgb_0207_rgb_left.mp4,NYUv2/test/living_room_0002/rgb_0207_disparity.npz
97
+ NYUv2/test/living_room_0003/rgb_0208_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0208_disparity.npz
98
+ NYUv2/test/living_room_0003/rgb_0209_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0209_disparity.npz
99
+ NYUv2/test/living_room_0003/rgb_0210_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0210_disparity.npz
100
+ NYUv2/test/living_room_0003/rgb_0211_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0211_disparity.npz
101
+ NYUv2/test/living_room_0003/rgb_0212_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0212_disparity.npz
102
+ NYUv2/test/bedroom_0022/rgb_0220_rgb_left.mp4,NYUv2/test/bedroom_0022/rgb_0220_disparity.npz
103
+ NYUv2/test/bedroom_0024/rgb_0221_rgb_left.mp4,NYUv2/test/bedroom_0024/rgb_0221_disparity.npz
104
+ NYUv2/test/bedroom_0024/rgb_0222_rgb_left.mp4,NYUv2/test/bedroom_0024/rgb_0222_disparity.npz
105
+ NYUv2/test/kitchen_0015/rgb_0250_rgb_left.mp4,NYUv2/test/kitchen_0015/rgb_0250_disparity.npz
106
+ NYUv2/test/living_room_0021/rgb_0264_rgb_left.mp4,NYUv2/test/living_room_0021/rgb_0264_disparity.npz
107
+ NYUv2/test/office_0016/rgb_0271_rgb_left.mp4,NYUv2/test/office_0016/rgb_0271_disparity.npz
108
+ NYUv2/test/office_0017/rgb_0272_rgb_left.mp4,NYUv2/test/office_0017/rgb_0272_disparity.npz
109
+ NYUv2/test/study_room_0001/rgb_0273_rgb_left.mp4,NYUv2/test/study_room_0001/rgb_0273_disparity.npz
110
+ NYUv2/test/study_room_0006/rgb_0279_rgb_left.mp4,NYUv2/test/study_room_0006/rgb_0279_disparity.npz
111
+ NYUv2/test/bedroom_0131/rgb_0280_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0280_disparity.npz
112
+ NYUv2/test/bedroom_0131/rgb_0281_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0281_disparity.npz
113
+ NYUv2/test/bedroom_0131/rgb_0282_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0282_disparity.npz
114
+ NYUv2/test/bedroom_0131/rgb_0283_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0283_disparity.npz
115
+ NYUv2/test/classroom_0001/rgb_0284_rgb_left.mp4,NYUv2/test/classroom_0001/rgb_0284_disparity.npz
116
+ NYUv2/test/classroom_0001/rgb_0285_rgb_left.mp4,NYUv2/test/classroom_0001/rgb_0285_disparity.npz
117
+ NYUv2/test/classroom_0007/rgb_0296_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0296_disparity.npz
118
+ NYUv2/test/classroom_0007/rgb_0297_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0297_disparity.npz
119
+ NYUv2/test/classroom_0007/rgb_0298_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0298_disparity.npz
120
+ NYUv2/test/classroom_0008/rgb_0299_rgb_left.mp4,NYUv2/test/classroom_0008/rgb_0299_disparity.npz
121
+ NYUv2/test/classroom_0008/rgb_0300_rgb_left.mp4,NYUv2/test/classroom_0008/rgb_0300_disparity.npz
122
+ NYUv2/test/classroom_0009/rgb_0301_rgb_left.mp4,NYUv2/test/classroom_0009/rgb_0301_disparity.npz
123
+ NYUv2/test/classroom_0009/rgb_0302_rgb_left.mp4,NYUv2/test/classroom_0009/rgb_0302_disparity.npz
124
+ NYUv2/test/classroom_0014/rgb_0310_rgb_left.mp4,NYUv2/test/classroom_0014/rgb_0310_disparity.npz
125
+ NYUv2/test/classroom_0014/rgb_0311_rgb_left.mp4,NYUv2/test/classroom_0014/rgb_0311_disparity.npz
126
+ NYUv2/test/classroom_0015/rgb_0312_rgb_left.mp4,NYUv2/test/classroom_0015/rgb_0312_disparity.npz
127
+ NYUv2/test/classroom_0017/rgb_0315_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0315_disparity.npz
128
+ NYUv2/test/classroom_0017/rgb_0316_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0316_disparity.npz
129
+ NYUv2/test/classroom_0017/rgb_0317_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0317_disparity.npz
130
+ NYUv2/test/classroom_0023/rgb_0325_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0325_disparity.npz
131
+ NYUv2/test/classroom_0023/rgb_0326_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0326_disparity.npz
132
+ NYUv2/test/classroom_0023/rgb_0327_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0327_disparity.npz
133
+ NYUv2/test/classroom_0023/rgb_0328_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0328_disparity.npz
134
+ NYUv2/test/classroom_0024/rgb_0329_rgb_left.mp4,NYUv2/test/classroom_0024/rgb_0329_disparity.npz
135
+ NYUv2/test/classroom_0024/rgb_0330_rgb_left.mp4,NYUv2/test/classroom_0024/rgb_0330_disparity.npz
136
+ NYUv2/test/classroom_0026/rgb_0331_rgb_left.mp4,NYUv2/test/classroom_0026/rgb_0331_disparity.npz
137
+ NYUv2/test/classroom_0026/rgb_0332_rgb_left.mp4,NYUv2/test/classroom_0026/rgb_0332_disparity.npz
138
+ NYUv2/test/computer_lab_0001/rgb_0333_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0333_disparity.npz
139
+ NYUv2/test/computer_lab_0001/rgb_0334_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0334_disparity.npz
140
+ NYUv2/test/computer_lab_0001/rgb_0335_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0335_disparity.npz
141
+ NYUv2/test/foyer_0001/rgb_0351_rgb_left.mp4,NYUv2/test/foyer_0001/rgb_0351_disparity.npz
142
+ NYUv2/test/foyer_0001/rgb_0352_rgb_left.mp4,NYUv2/test/foyer_0001/rgb_0352_disparity.npz
143
+ NYUv2/test/home_office_0001/rgb_0355_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0355_disparity.npz
144
+ NYUv2/test/home_office_0001/rgb_0356_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0356_disparity.npz
145
+ NYUv2/test/home_office_0001/rgb_0357_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0357_disparity.npz
146
+ NYUv2/test/home_office_0001/rgb_0358_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0358_disparity.npz
147
+ NYUv2/test/home_office_0002/rgb_0359_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0359_disparity.npz
148
+ NYUv2/test/home_office_0002/rgb_0360_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0360_disparity.npz
149
+ NYUv2/test/home_office_0002/rgb_0361_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0361_disparity.npz
150
+ NYUv2/test/home_office_0002/rgb_0362_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0362_disparity.npz
151
+ NYUv2/test/home_office_0003/rgb_0363_rgb_left.mp4,NYUv2/test/home_office_0003/rgb_0363_disparity.npz
152
+ NYUv2/test/home_office_0003/rgb_0364_rgb_left.mp4,NYUv2/test/home_office_0003/rgb_0364_disparity.npz
153
+ NYUv2/test/home_office_0009/rgb_0384_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0384_disparity.npz
154
+ NYUv2/test/home_office_0009/rgb_0385_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0385_disparity.npz
155
+ NYUv2/test/home_office_0009/rgb_0386_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0386_disparity.npz
156
+ NYUv2/test/home_office_0010/rgb_0387_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0387_disparity.npz
157
+ NYUv2/test/home_office_0010/rgb_0388_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0388_disparity.npz
158
+ NYUv2/test/home_office_0010/rgb_0389_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0389_disparity.npz
159
+ NYUv2/test/home_office_0010/rgb_0390_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0390_disparity.npz
160
+ NYUv2/test/home_office_0012/rgb_0395_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0395_disparity.npz
161
+ NYUv2/test/home_office_0012/rgb_0396_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0396_disparity.npz
162
+ NYUv2/test/home_office_0012/rgb_0397_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0397_disparity.npz
163
+ NYUv2/test/office_kitchen_0002/rgb_0411_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0411_disparity.npz
164
+ NYUv2/test/office_kitchen_0002/rgb_0412_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0412_disparity.npz
165
+ NYUv2/test/office_kitchen_0002/rgb_0413_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0413_disparity.npz
166
+ NYUv2/test/office_kitchen_0002/rgb_0414_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0414_disparity.npz
167
+ NYUv2/test/playroom_0005/rgb_0430_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0430_disparity.npz
168
+ NYUv2/test/playroom_0005/rgb_0431_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0431_disparity.npz
169
+ NYUv2/test/playroom_0005/rgb_0432_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0432_disparity.npz
170
+ NYUv2/test/playroom_0005/rgb_0433_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0433_disparity.npz
171
+ NYUv2/test/playroom_0005/rgb_0434_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0434_disparity.npz
172
+ NYUv2/test/playroom_0005/rgb_0435_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0435_disparity.npz
173
+ NYUv2/test/playroom_0007/rgb_0441_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0441_disparity.npz
174
+ NYUv2/test/playroom_0007/rgb_0442_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0442_disparity.npz
175
+ NYUv2/test/playroom_0007/rgb_0443_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0443_disparity.npz
176
+ NYUv2/test/playroom_0008/rgb_0444_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0444_disparity.npz
177
+ NYUv2/test/playroom_0008/rgb_0445_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0445_disparity.npz
178
+ NYUv2/test/playroom_0008/rgb_0446_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0446_disparity.npz
179
+ NYUv2/test/playroom_0008/rgb_0447_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0447_disparity.npz
180
+ NYUv2/test/playroom_0008/rgb_0448_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0448_disparity.npz
181
+ NYUv2/test/reception_room_0003/rgb_0462_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0462_disparity.npz
182
+ NYUv2/test/reception_room_0003/rgb_0463_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0463_disparity.npz
183
+ NYUv2/test/reception_room_0003/rgb_0464_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0464_disparity.npz
184
+ NYUv2/test/reception_room_0003/rgb_0465_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0465_disparity.npz
185
+ NYUv2/test/reception_room_0003/rgb_0466_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0466_disparity.npz
186
+ NYUv2/test/study_0001/rgb_0469_rgb_left.mp4,NYUv2/test/study_0001/rgb_0469_disparity.npz
187
+ NYUv2/test/study_0001/rgb_0470_rgb_left.mp4,NYUv2/test/study_0001/rgb_0470_disparity.npz
188
+ NYUv2/test/study_0001/rgb_0471_rgb_left.mp4,NYUv2/test/study_0001/rgb_0471_disparity.npz
189
+ NYUv2/test/study_0001/rgb_0472_rgb_left.mp4,NYUv2/test/study_0001/rgb_0472_disparity.npz
190
+ NYUv2/test/study_0001/rgb_0473_rgb_left.mp4,NYUv2/test/study_0001/rgb_0473_disparity.npz
191
+ NYUv2/test/study_0002/rgb_0474_rgb_left.mp4,NYUv2/test/study_0002/rgb_0474_disparity.npz
192
+ NYUv2/test/study_0002/rgb_0475_rgb_left.mp4,NYUv2/test/study_0002/rgb_0475_disparity.npz
193
+ NYUv2/test/study_0002/rgb_0476_rgb_left.mp4,NYUv2/test/study_0002/rgb_0476_disparity.npz
194
+ NYUv2/test/study_0002/rgb_0477_rgb_left.mp4,NYUv2/test/study_0002/rgb_0477_disparity.npz
195
+ NYUv2/test/bathroom_0058/rgb_0508_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0508_disparity.npz
196
+ NYUv2/test/bathroom_0058/rgb_0509_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0509_disparity.npz
197
+ NYUv2/test/bathroom_0058/rgb_0510_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0510_disparity.npz
198
+ NYUv2/test/bathroom_0060/rgb_0511_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0511_disparity.npz
199
+ NYUv2/test/bathroom_0060/rgb_0512_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0512_disparity.npz
200
+ NYUv2/test/bathroom_0060/rgb_0513_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0513_disparity.npz
201
+ NYUv2/test/bedroom_0133/rgb_0515_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0515_disparity.npz
202
+ NYUv2/test/bedroom_0133/rgb_0516_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0516_disparity.npz
203
+ NYUv2/test/bedroom_0133/rgb_0517_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0517_disparity.npz
204
+ NYUv2/test/bedroom_0133/rgb_0518_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0518_disparity.npz
205
+ NYUv2/test/bedroom_0133/rgb_0519_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0519_disparity.npz
206
+ NYUv2/test/bedroom_0134/rgb_0520_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0520_disparity.npz
207
+ NYUv2/test/bedroom_0134/rgb_0521_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0521_disparity.npz
208
+ NYUv2/test/bedroom_0134/rgb_0522_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0522_disparity.npz
209
+ NYUv2/test/bedroom_0135/rgb_0523_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0523_disparity.npz
210
+ NYUv2/test/bedroom_0135/rgb_0524_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0524_disparity.npz
211
+ NYUv2/test/bedroom_0135/rgb_0525_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0525_disparity.npz
212
+ NYUv2/test/bedroom_0135/rgb_0526_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0526_disparity.npz
213
+ NYUv2/test/bedroom_0137/rgb_0531_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0531_disparity.npz
214
+ NYUv2/test/bedroom_0137/rgb_0532_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0532_disparity.npz
215
+ NYUv2/test/bedroom_0137/rgb_0533_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0533_disparity.npz
216
+ NYUv2/test/bedroom_0139/rgb_0537_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0537_disparity.npz
217
+ NYUv2/test/bedroom_0139/rgb_0538_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0538_disparity.npz
218
+ NYUv2/test/bedroom_0139/rgb_0539_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0539_disparity.npz
219
+ NYUv2/test/dining_room_0038/rgb_0549_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0549_disparity.npz
220
+ NYUv2/test/dining_room_0038/rgb_0550_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0550_disparity.npz
221
+ NYUv2/test/dining_room_0038/rgb_0551_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0551_disparity.npz
222
+ NYUv2/test/home_office_0014/rgb_0555_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0555_disparity.npz
223
+ NYUv2/test/home_office_0014/rgb_0556_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0556_disparity.npz
224
+ NYUv2/test/home_office_0014/rgb_0557_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0557_disparity.npz
225
+ NYUv2/test/home_office_0014/rgb_0558_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0558_disparity.npz
226
+ NYUv2/test/kitchen_0055/rgb_0559_rgb_left.mp4,NYUv2/test/kitchen_0055/rgb_0559_disparity.npz
227
+ NYUv2/test/kitchen_0055/rgb_0560_rgb_left.mp4,NYUv2/test/kitchen_0055/rgb_0560_disparity.npz
228
+ NYUv2/test/kitchen_0056/rgb_0561_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0561_disparity.npz
229
+ NYUv2/test/kitchen_0056/rgb_0562_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0562_disparity.npz
230
+ NYUv2/test/kitchen_0056/rgb_0563_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0563_disparity.npz
231
+ NYUv2/test/kitchen_0056/rgb_0564_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0564_disparity.npz
232
+ NYUv2/test/kitchen_0057/rgb_0565_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0565_disparity.npz
233
+ NYUv2/test/kitchen_0057/rgb_0566_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0566_disparity.npz
234
+ NYUv2/test/kitchen_0057/rgb_0567_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0567_disparity.npz
235
+ NYUv2/test/kitchen_0057/rgb_0568_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0568_disparity.npz
236
+ NYUv2/test/kitchen_0058/rgb_0569_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0569_disparity.npz
237
+ NYUv2/test/kitchen_0058/rgb_0570_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0570_disparity.npz
238
+ NYUv2/test/kitchen_0058/rgb_0571_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0571_disparity.npz
239
+ NYUv2/test/living_room_0081/rgb_0579_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0579_disparity.npz
240
+ NYUv2/test/living_room_0081/rgb_0580_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0580_disparity.npz
241
+ NYUv2/test/living_room_0081/rgb_0581_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0581_disparity.npz
242
+ NYUv2/test/living_room_0081/rgb_0582_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0582_disparity.npz
243
+ NYUv2/test/living_room_0081/rgb_0583_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0583_disparity.npz
244
+ NYUv2/test/living_room_0084/rgb_0591_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0591_disparity.npz
245
+ NYUv2/test/living_room_0084/rgb_0592_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0592_disparity.npz
246
+ NYUv2/test/living_room_0084/rgb_0593_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0593_disparity.npz
247
+ NYUv2/test/living_room_0084/rgb_0594_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0594_disparity.npz
248
+ NYUv2/test/living_room_0087/rgb_0603_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0603_disparity.npz
249
+ NYUv2/test/living_room_0087/rgb_0604_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0604_disparity.npz
250
+ NYUv2/test/living_room_0087/rgb_0605_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0605_disparity.npz
251
+ NYUv2/test/living_room_0087/rgb_0606_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0606_disparity.npz
252
+ NYUv2/test/living_room_0087/rgb_0607_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0607_disparity.npz
253
+ NYUv2/test/office_0020/rgb_0612_rgb_left.mp4,NYUv2/test/office_0020/rgb_0612_disparity.npz
254
+ NYUv2/test/office_0020/rgb_0613_rgb_left.mp4,NYUv2/test/office_0020/rgb_0613_disparity.npz
255
+ NYUv2/test/office_0022/rgb_0617_rgb_left.mp4,NYUv2/test/office_0022/rgb_0617_disparity.npz
256
+ NYUv2/test/office_0022/rgb_0618_rgb_left.mp4,NYUv2/test/office_0022/rgb_0618_disparity.npz
257
+ NYUv2/test/office_0022/rgb_0619_rgb_left.mp4,NYUv2/test/office_0022/rgb_0619_disparity.npz
258
+ NYUv2/test/office_0022/rgb_0620_rgb_left.mp4,NYUv2/test/office_0022/rgb_0620_disparity.npz
259
+ NYUv2/test/office_0022/rgb_0621_rgb_left.mp4,NYUv2/test/office_0022/rgb_0621_disparity.npz
260
+ NYUv2/test/office_0027/rgb_0633_rgb_left.mp4,NYUv2/test/office_0027/rgb_0633_disparity.npz
261
+ NYUv2/test/office_0027/rgb_0634_rgb_left.mp4,NYUv2/test/office_0027/rgb_0634_disparity.npz
262
+ NYUv2/test/office_0027/rgb_0635_rgb_left.mp4,NYUv2/test/office_0027/rgb_0635_disparity.npz
263
+ NYUv2/test/office_0027/rgb_0636_rgb_left.mp4,NYUv2/test/office_0027/rgb_0636_disparity.npz
264
+ NYUv2/test/office_0027/rgb_0637_rgb_left.mp4,NYUv2/test/office_0027/rgb_0637_disparity.npz
265
+ NYUv2/test/office_0027/rgb_0638_rgb_left.mp4,NYUv2/test/office_0027/rgb_0638_disparity.npz
266
+ NYUv2/test/study_0007/rgb_0644_rgb_left.mp4,NYUv2/test/study_0007/rgb_0644_disparity.npz
267
+ NYUv2/test/study_0007/rgb_0645_rgb_left.mp4,NYUv2/test/study_0007/rgb_0645_disparity.npz
268
+ NYUv2/test/bathroom_0008/rgb_0650_rgb_left.mp4,NYUv2/test/bathroom_0008/rgb_0650_disparity.npz
269
+ NYUv2/test/bathroom_0009/rgb_0651_rgb_left.mp4,NYUv2/test/bathroom_0009/rgb_0651_disparity.npz
270
+ NYUv2/test/bathroom_0012/rgb_0656_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0656_disparity.npz
271
+ NYUv2/test/bathroom_0012/rgb_0657_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0657_disparity.npz
272
+ NYUv2/test/bathroom_0012/rgb_0658_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0658_disparity.npz
273
+ NYUv2/test/bathroom_0015/rgb_0663_rgb_left.mp4,NYUv2/test/bathroom_0015/rgb_0663_disparity.npz
274
+ NYUv2/test/bathroom_0015/rgb_0664_rgb_left.mp4,NYUv2/test/bathroom_0015/rgb_0664_disparity.npz
275
+ NYUv2/test/bathroom_0017/rgb_0668_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0668_disparity.npz
276
+ NYUv2/test/bathroom_0017/rgb_0669_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0669_disparity.npz
277
+ NYUv2/test/bathroom_0017/rgb_0670_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0670_disparity.npz
278
+ NYUv2/test/bathroom_0018/rgb_0671_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0671_disparity.npz
279
+ NYUv2/test/bathroom_0018/rgb_0672_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0672_disparity.npz
280
+ NYUv2/test/bathroom_0018/rgb_0673_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0673_disparity.npz
281
+ NYUv2/test/bathroom_0020/rgb_0676_rgb_left.mp4,NYUv2/test/bathroom_0020/rgb_0676_disparity.npz
282
+ NYUv2/test/bathroom_0020/rgb_0677_rgb_left.mp4,NYUv2/test/bathroom_0020/rgb_0677_disparity.npz
283
+ NYUv2/test/bathroom_0021/rgb_0678_rgb_left.mp4,NYUv2/test/bathroom_0021/rgb_0678_disparity.npz
284
+ NYUv2/test/bathroom_0021/rgb_0679_rgb_left.mp4,NYUv2/test/bathroom_0021/rgb_0679_disparity.npz
285
+ NYUv2/test/bathroom_0022/rgb_0680_rgb_left.mp4,NYUv2/test/bathroom_0022/rgb_0680_disparity.npz
286
+ NYUv2/test/bathroom_0022/rgb_0681_rgb_left.mp4,NYUv2/test/bathroom_0022/rgb_0681_disparity.npz
287
+ NYUv2/test/bathroom_0025/rgb_0686_rgb_left.mp4,NYUv2/test/bathroom_0025/rgb_0686_disparity.npz
288
+ NYUv2/test/bathroom_0025/rgb_0687_rgb_left.mp4,NYUv2/test/bathroom_0025/rgb_0687_disparity.npz
289
+ NYUv2/test/bathroom_0026/rgb_0688_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0688_disparity.npz
290
+ NYUv2/test/bathroom_0026/rgb_0689_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0689_disparity.npz
291
+ NYUv2/test/bathroom_0026/rgb_0690_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0690_disparity.npz
292
+ NYUv2/test/bathroom_0029/rgb_0693_rgb_left.mp4,NYUv2/test/bathroom_0029/rgb_0693_disparity.npz
293
+ NYUv2/test/bathroom_0029/rgb_0694_rgb_left.mp4,NYUv2/test/bathroom_0029/rgb_0694_disparity.npz
294
+ NYUv2/test/bathroom_0031/rgb_0697_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0697_disparity.npz
295
+ NYUv2/test/bathroom_0031/rgb_0698_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0698_disparity.npz
296
+ NYUv2/test/bathroom_0031/rgb_0699_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0699_disparity.npz
297
+ NYUv2/test/bathroom_0036/rgb_0706_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0706_disparity.npz
298
+ NYUv2/test/bathroom_0036/rgb_0707_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0707_disparity.npz
299
+ NYUv2/test/bathroom_0036/rgb_0708_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0708_disparity.npz
300
+ NYUv2/test/bathroom_0037/rgb_0709_rgb_left.mp4,NYUv2/test/bathroom_0037/rgb_0709_disparity.npz
301
+ NYUv2/test/bathroom_0037/rgb_0710_rgb_left.mp4,NYUv2/test/bathroom_0037/rgb_0710_disparity.npz
302
+ NYUv2/test/bathroom_0038/rgb_0711_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0711_disparity.npz
303
+ NYUv2/test/bathroom_0038/rgb_0712_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0712_disparity.npz
304
+ NYUv2/test/bathroom_0038/rgb_0713_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0713_disparity.npz
305
+ NYUv2/test/bathroom_0040/rgb_0717_rgb_left.mp4,NYUv2/test/bathroom_0040/rgb_0717_disparity.npz
306
+ NYUv2/test/bathroom_0040/rgb_0718_rgb_left.mp4,NYUv2/test/bathroom_0040/rgb_0718_disparity.npz
307
+ NYUv2/test/bathroom_0043/rgb_0724_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0724_disparity.npz
308
+ NYUv2/test/bathroom_0043/rgb_0725_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0725_disparity.npz
309
+ NYUv2/test/bathroom_0043/rgb_0726_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0726_disparity.npz
310
+ NYUv2/test/bathroom_0044/rgb_0727_rgb_left.mp4,NYUv2/test/bathroom_0044/rgb_0727_disparity.npz
311
+ NYUv2/test/bathroom_0044/rgb_0728_rgb_left.mp4,NYUv2/test/bathroom_0044/rgb_0728_disparity.npz
312
+ NYUv2/test/bathroom_0046/rgb_0731_rgb_left.mp4,NYUv2/test/bathroom_0046/rgb_0731_disparity.npz
313
+ NYUv2/test/bathroom_0046/rgb_0732_rgb_left.mp4,NYUv2/test/bathroom_0046/rgb_0732_disparity.npz
314
+ NYUv2/test/bathroom_0047/rgb_0733_rgb_left.mp4,NYUv2/test/bathroom_0047/rgb_0733_disparity.npz
315
+ NYUv2/test/bathroom_0047/rgb_0734_rgb_left.mp4,NYUv2/test/bathroom_0047/rgb_0734_disparity.npz
316
+ NYUv2/test/bathroom_0052/rgb_0743_rgb_left.mp4,NYUv2/test/bathroom_0052/rgb_0743_disparity.npz
317
+ NYUv2/test/bathroom_0052/rgb_0744_rgb_left.mp4,NYUv2/test/bathroom_0052/rgb_0744_disparity.npz
318
+ NYUv2/test/kitchen_0021/rgb_0759_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0759_disparity.npz
319
+ NYUv2/test/kitchen_0021/rgb_0760_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0760_disparity.npz
320
+ NYUv2/test/kitchen_0021/rgb_0761_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0761_disparity.npz
321
+ NYUv2/test/kitchen_0022/rgb_0762_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0762_disparity.npz
322
+ NYUv2/test/kitchen_0022/rgb_0763_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0763_disparity.npz
323
+ NYUv2/test/kitchen_0022/rgb_0764_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0764_disparity.npz
324
+ NYUv2/test/kitchen_0022/rgb_0765_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0765_disparity.npz
325
+ NYUv2/test/kitchen_0022/rgb_0766_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0766_disparity.npz
326
+ NYUv2/test/kitchen_0023/rgb_0767_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0767_disparity.npz
327
+ NYUv2/test/kitchen_0023/rgb_0768_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0768_disparity.npz
328
+ NYUv2/test/kitchen_0023/rgb_0769_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0769_disparity.npz
329
+ NYUv2/test/kitchen_0023/rgb_0770_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0770_disparity.npz
330
+ NYUv2/test/kitchen_0023/rgb_0771_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0771_disparity.npz
331
+ NYUv2/test/kitchen_0024/rgb_0772_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0772_disparity.npz
332
+ NYUv2/test/kitchen_0024/rgb_0773_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0773_disparity.npz
333
+ NYUv2/test/kitchen_0024/rgb_0774_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0774_disparity.npz
334
+ NYUv2/test/kitchen_0024/rgb_0775_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0775_disparity.npz
335
+ NYUv2/test/kitchen_0024/rgb_0776_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0776_disparity.npz
336
+ NYUv2/test/kitchen_0025/rgb_0777_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0777_disparity.npz
337
+ NYUv2/test/kitchen_0025/rgb_0778_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0778_disparity.npz
338
+ NYUv2/test/kitchen_0025/rgb_0779_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0779_disparity.npz
339
+ NYUv2/test/kitchen_0026/rgb_0780_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0780_disparity.npz
340
+ NYUv2/test/kitchen_0026/rgb_0781_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0781_disparity.npz
341
+ NYUv2/test/kitchen_0026/rgb_0782_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0782_disparity.npz
342
+ NYUv2/test/kitchen_0027/rgb_0783_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0783_disparity.npz
343
+ NYUv2/test/kitchen_0027/rgb_0784_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0784_disparity.npz
344
+ NYUv2/test/kitchen_0027/rgb_0785_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0785_disparity.npz
345
+ NYUv2/test/kitchen_0027/rgb_0786_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0786_disparity.npz
346
+ NYUv2/test/kitchen_0027/rgb_0787_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0787_disparity.npz
347
+ NYUv2/test/kitchen_0030/rgb_0800_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0800_disparity.npz
348
+ NYUv2/test/kitchen_0030/rgb_0801_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0801_disparity.npz
349
+ NYUv2/test/kitchen_0030/rgb_0802_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0802_disparity.npz
350
+ NYUv2/test/kitchen_0030/rgb_0803_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0803_disparity.npz
351
+ NYUv2/test/kitchen_0030/rgb_0804_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0804_disparity.npz
352
+ NYUv2/test/kitchen_0032/rgb_0810_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0810_disparity.npz
353
+ NYUv2/test/kitchen_0032/rgb_0811_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0811_disparity.npz
354
+ NYUv2/test/kitchen_0032/rgb_0812_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0812_disparity.npz
355
+ NYUv2/test/kitchen_0032/rgb_0813_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0813_disparity.npz
356
+ NYUv2/test/kitchen_0032/rgb_0814_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0814_disparity.npz
357
+ NYUv2/test/kitchen_0034/rgb_0821_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0821_disparity.npz
358
+ NYUv2/test/kitchen_0034/rgb_0822_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0822_disparity.npz
359
+ NYUv2/test/kitchen_0034/rgb_0823_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0823_disparity.npz
360
+ NYUv2/test/kitchen_0038/rgb_0833_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0833_disparity.npz
361
+ NYUv2/test/kitchen_0038/rgb_0834_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0834_disparity.npz
362
+ NYUv2/test/kitchen_0038/rgb_0835_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0835_disparity.npz
363
+ NYUv2/test/kitchen_0038/rgb_0836_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0836_disparity.npz
364
+ NYUv2/test/kitchen_0039/rgb_0837_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0837_disparity.npz
365
+ NYUv2/test/kitchen_0039/rgb_0838_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0838_disparity.npz
366
+ NYUv2/test/kitchen_0039/rgb_0839_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0839_disparity.npz
367
+ NYUv2/test/kitchen_0039/rgb_0840_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0840_disparity.npz
368
+ NYUv2/test/kitchen_0039/rgb_0841_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0841_disparity.npz
369
+ NYUv2/test/kitchen_0039/rgb_0842_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0842_disparity.npz
370
+ NYUv2/test/kitchen_0040/rgb_0843_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0843_disparity.npz
371
+ NYUv2/test/kitchen_0040/rgb_0844_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0844_disparity.npz
372
+ NYUv2/test/kitchen_0040/rgb_0845_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0845_disparity.npz
373
+ NYUv2/test/kitchen_0040/rgb_0846_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0846_disparity.npz
374
+ NYUv2/test/kitchen_0042/rgb_0850_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0850_disparity.npz
375
+ NYUv2/test/kitchen_0042/rgb_0851_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0851_disparity.npz
376
+ NYUv2/test/kitchen_0042/rgb_0852_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0852_disparity.npz
377
+ NYUv2/test/kitchen_0044/rgb_0857_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0857_disparity.npz
378
+ NYUv2/test/kitchen_0044/rgb_0858_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0858_disparity.npz
379
+ NYUv2/test/kitchen_0044/rgb_0859_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0859_disparity.npz
380
+ NYUv2/test/kitchen_0044/rgb_0860_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0860_disparity.npz
381
+ NYUv2/test/kitchen_0044/rgb_0861_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0861_disparity.npz
382
+ NYUv2/test/kitchen_0044/rgb_0862_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0862_disparity.npz
383
+ NYUv2/test/kitchen_0046/rgb_0869_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0869_disparity.npz
384
+ NYUv2/test/kitchen_0046/rgb_0870_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0870_disparity.npz
385
+ NYUv2/test/kitchen_0046/rgb_0871_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0871_disparity.npz
386
+ NYUv2/test/kitchen_0054/rgb_0906_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0906_disparity.npz
387
+ NYUv2/test/kitchen_0054/rgb_0907_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0907_disparity.npz
388
+ NYUv2/test/kitchen_0054/rgb_0908_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0908_disparity.npz
389
+ NYUv2/test/bedroom_0027/rgb_0917_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0917_disparity.npz
390
+ NYUv2/test/bedroom_0027/rgb_0918_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0918_disparity.npz
391
+ NYUv2/test/bedroom_0027/rgb_0919_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0919_disparity.npz
392
+ NYUv2/test/bedroom_0030/rgb_0926_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0926_disparity.npz
393
+ NYUv2/test/bedroom_0030/rgb_0927_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0927_disparity.npz
394
+ NYUv2/test/bedroom_0030/rgb_0928_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0928_disparity.npz
395
+ NYUv2/test/bedroom_0032/rgb_0932_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0932_disparity.npz
396
+ NYUv2/test/bedroom_0032/rgb_0933_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0933_disparity.npz
397
+ NYUv2/test/bedroom_0032/rgb_0934_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0934_disparity.npz
398
+ NYUv2/test/bedroom_0032/rgb_0935_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0935_disparity.npz
399
+ NYUv2/test/bedroom_0037/rgb_0945_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0945_disparity.npz
400
+ NYUv2/test/bedroom_0037/rgb_0946_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0946_disparity.npz
401
+ NYUv2/test/bedroom_0037/rgb_0947_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0947_disparity.npz
402
+ NYUv2/test/bedroom_0043/rgb_0959_rgb_left.mp4,NYUv2/test/bedroom_0043/rgb_0959_disparity.npz
403
+ NYUv2/test/bedroom_0043/rgb_0960_rgb_left.mp4,NYUv2/test/bedroom_0043/rgb_0960_disparity.npz
404
+ NYUv2/test/bedroom_0044/rgb_0961_rgb_left.mp4,NYUv2/test/bedroom_0044/rgb_0961_disparity.npz
405
+ NYUv2/test/bedroom_0044/rgb_0962_rgb_left.mp4,NYUv2/test/bedroom_0044/rgb_0962_disparity.npz
406
+ NYUv2/test/bedroom_0046/rgb_0965_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0965_disparity.npz
407
+ NYUv2/test/bedroom_0046/rgb_0966_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0966_disparity.npz
408
+ NYUv2/test/bedroom_0046/rgb_0967_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0967_disparity.npz
409
+ NYUv2/test/bedroom_0048/rgb_0970_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0970_disparity.npz
410
+ NYUv2/test/bedroom_0048/rgb_0971_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0971_disparity.npz
411
+ NYUv2/test/bedroom_0048/rgb_0972_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0972_disparity.npz
412
+ NYUv2/test/bedroom_0048/rgb_0973_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0973_disparity.npz
413
+ NYUv2/test/bedroom_0048/rgb_0974_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0974_disparity.npz
414
+ NYUv2/test/bedroom_0049/rgb_0975_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0975_disparity.npz
415
+ NYUv2/test/bedroom_0049/rgb_0976_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0976_disparity.npz
416
+ NYUv2/test/bedroom_0049/rgb_0977_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0977_disparity.npz
417
+ NYUv2/test/bedroom_0054/rgb_0991_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0991_disparity.npz
418
+ NYUv2/test/bedroom_0054/rgb_0992_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0992_disparity.npz
419
+ NYUv2/test/bedroom_0054/rgb_0993_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0993_disparity.npz
420
+ NYUv2/test/bedroom_0055/rgb_0994_rgb_left.mp4,NYUv2/test/bedroom_0055/rgb_0994_disparity.npz
421
+ NYUv2/test/bedroom_0055/rgb_0995_rgb_left.mp4,NYUv2/test/bedroom_0055/rgb_0995_disparity.npz
422
+ NYUv2/test/bedroom_0058/rgb_1001_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1001_disparity.npz
423
+ NYUv2/test/bedroom_0058/rgb_1002_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1002_disparity.npz
424
+ NYUv2/test/bedroom_0058/rgb_1003_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1003_disparity.npz
425
+ NYUv2/test/bedroom_0058/rgb_1004_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1004_disparity.npz
426
+ NYUv2/test/bedroom_0061/rgb_1010_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1010_disparity.npz
427
+ NYUv2/test/bedroom_0061/rgb_1011_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1011_disparity.npz
428
+ NYUv2/test/bedroom_0061/rgb_1012_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1012_disparity.npz
429
+ NYUv2/test/bedroom_0064/rgb_1021_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1021_disparity.npz
430
+ NYUv2/test/bedroom_0064/rgb_1022_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1022_disparity.npz
431
+ NYUv2/test/bedroom_0064/rgb_1023_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1023_disparity.npz
432
+ NYUv2/test/bedroom_0068/rgb_1032_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1032_disparity.npz
433
+ NYUv2/test/bedroom_0068/rgb_1033_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1033_disparity.npz
434
+ NYUv2/test/bedroom_0068/rgb_1034_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1034_disparity.npz
435
+ NYUv2/test/bedroom_0070/rgb_1038_rgb_left.mp4,NYUv2/test/bedroom_0070/rgb_1038_disparity.npz
436
+ NYUv2/test/bedroom_0070/rgb_1039_rgb_left.mp4,NYUv2/test/bedroom_0070/rgb_1039_disparity.npz
437
+ NYUv2/test/bedroom_0073/rgb_1048_rgb_left.mp4,NYUv2/test/bedroom_0073/rgb_1048_disparity.npz
438
+ NYUv2/test/bedroom_0073/rgb_1049_rgb_left.mp4,NYUv2/test/bedroom_0073/rgb_1049_disparity.npz
439
+ NYUv2/test/bedroom_0075/rgb_1052_rgb_left.mp4,NYUv2/test/bedroom_0075/rgb_1052_disparity.npz
440
+ NYUv2/test/bedroom_0075/rgb_1053_rgb_left.mp4,NYUv2/test/bedroom_0075/rgb_1053_disparity.npz
441
+ NYUv2/test/bedroom_0077/rgb_1057_rgb_left.mp4,NYUv2/test/bedroom_0077/rgb_1057_disparity.npz
442
+ NYUv2/test/bedroom_0077/rgb_1058_rgb_left.mp4,NYUv2/test/bedroom_0077/rgb_1058_disparity.npz
443
+ NYUv2/test/bedroom_0083/rgb_1075_rgb_left.mp4,NYUv2/test/bedroom_0083/rgb_1075_disparity.npz
444
+ NYUv2/test/bedroom_0083/rgb_1076_rgb_left.mp4,NYUv2/test/bedroom_0083/rgb_1076_disparity.npz
445
+ NYUv2/test/bedroom_0084/rgb_1077_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1077_disparity.npz
446
+ NYUv2/test/bedroom_0084/rgb_1078_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1078_disparity.npz
447
+ NYUv2/test/bedroom_0084/rgb_1079_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1079_disparity.npz
448
+ NYUv2/test/bedroom_0084/rgb_1080_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1080_disparity.npz
449
+ NYUv2/test/bedroom_0085/rgb_1081_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1081_disparity.npz
450
+ NYUv2/test/bedroom_0085/rgb_1082_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1082_disparity.npz
451
+ NYUv2/test/bedroom_0085/rgb_1083_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1083_disparity.npz
452
+ NYUv2/test/bedroom_0085/rgb_1084_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1084_disparity.npz
453
+ NYUv2/test/bedroom_0087/rgb_1088_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1088_disparity.npz
454
+ NYUv2/test/bedroom_0087/rgb_1089_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1089_disparity.npz
455
+ NYUv2/test/bedroom_0087/rgb_1090_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1090_disparity.npz
456
+ NYUv2/test/bedroom_0088/rgb_1091_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1091_disparity.npz
457
+ NYUv2/test/bedroom_0088/rgb_1092_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1092_disparity.npz
458
+ NYUv2/test/bedroom_0088/rgb_1093_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1093_disparity.npz
459
+ NYUv2/test/bedroom_0089/rgb_1094_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1094_disparity.npz
460
+ NYUv2/test/bedroom_0089/rgb_1095_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1095_disparity.npz
461
+ NYUv2/test/bedroom_0089/rgb_1096_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1096_disparity.npz
462
+ NYUv2/test/bedroom_0091/rgb_1098_rgb_left.mp4,NYUv2/test/bedroom_0091/rgb_1098_disparity.npz
463
+ NYUv2/test/bedroom_0091/rgb_1099_rgb_left.mp4,NYUv2/test/bedroom_0091/rgb_1099_disparity.npz
464
+ NYUv2/test/bedroom_0092/rgb_1100_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1100_disparity.npz
465
+ NYUv2/test/bedroom_0092/rgb_1101_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1101_disparity.npz
466
+ NYUv2/test/bedroom_0092/rgb_1102_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1102_disparity.npz
467
+ NYUv2/test/bedroom_0093/rgb_1103_rgb_left.mp4,NYUv2/test/bedroom_0093/rgb_1103_disparity.npz
468
+ NYUv2/test/bedroom_0093/rgb_1104_rgb_left.mp4,NYUv2/test/bedroom_0093/rgb_1104_disparity.npz
469
+ NYUv2/test/bedroom_0095/rgb_1106_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1106_disparity.npz
470
+ NYUv2/test/bedroom_0095/rgb_1107_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1107_disparity.npz
471
+ NYUv2/test/bedroom_0095/rgb_1108_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1108_disparity.npz
472
+ NYUv2/test/bedroom_0095/rgb_1109_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1109_disparity.npz
473
+ NYUv2/test/bedroom_0099/rgb_1117_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1117_disparity.npz
474
+ NYUv2/test/bedroom_0099/rgb_1118_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1118_disparity.npz
475
+ NYUv2/test/bedroom_0099/rgb_1119_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1119_disparity.npz
476
+ NYUv2/test/bedroom_0101/rgb_1123_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1123_disparity.npz
477
+ NYUv2/test/bedroom_0101/rgb_1124_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1124_disparity.npz
478
+ NYUv2/test/bedroom_0101/rgb_1125_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1125_disparity.npz
479
+ NYUv2/test/bedroom_0101/rgb_1126_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1126_disparity.npz
480
+ NYUv2/test/bedroom_0102/rgb_1127_rgb_left.mp4,NYUv2/test/bedroom_0102/rgb_1127_disparity.npz
481
+ NYUv2/test/bedroom_0102/rgb_1128_rgb_left.mp4,NYUv2/test/bedroom_0102/rgb_1128_disparity.npz
482
+ NYUv2/test/bedroom_0103/rgb_1129_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1129_disparity.npz
483
+ NYUv2/test/bedroom_0103/rgb_1130_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1130_disparity.npz
484
+ NYUv2/test/bedroom_0103/rgb_1131_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1131_disparity.npz
485
+ NYUv2/test/bedroom_0105/rgb_1135_rgb_left.mp4,NYUv2/test/bedroom_0105/rgb_1135_disparity.npz
486
+ NYUv2/test/bedroom_0105/rgb_1136_rgb_left.mp4,NYUv2/test/bedroom_0105/rgb_1136_disparity.npz
487
+ NYUv2/test/bedroom_0108/rgb_1144_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1144_disparity.npz
488
+ NYUv2/test/bedroom_0108/rgb_1145_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1145_disparity.npz
489
+ NYUv2/test/bedroom_0108/rgb_1146_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1146_disparity.npz
490
+ NYUv2/test/bedroom_0109/rgb_1147_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1147_disparity.npz
491
+ NYUv2/test/bedroom_0109/rgb_1148_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1148_disparity.npz
492
+ NYUv2/test/bedroom_0109/rgb_1149_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1149_disparity.npz
493
+ NYUv2/test/bedroom_0110/rgb_1150_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1150_disparity.npz
494
+ NYUv2/test/bedroom_0110/rgb_1151_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1151_disparity.npz
495
+ NYUv2/test/bedroom_0110/rgb_1152_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1152_disparity.npz
496
+ NYUv2/test/bedroom_0111/rgb_1153_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1153_disparity.npz
497
+ NYUv2/test/bedroom_0111/rgb_1154_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1154_disparity.npz
498
+ NYUv2/test/bedroom_0111/rgb_1155_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1155_disparity.npz
499
+ NYUv2/test/bedroom_0112/rgb_1156_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1156_disparity.npz
500
+ NYUv2/test/bedroom_0112/rgb_1157_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1157_disparity.npz
501
+ NYUv2/test/bedroom_0112/rgb_1158_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1158_disparity.npz
502
+ NYUv2/test/bedroom_0114/rgb_1162_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1162_disparity.npz
503
+ NYUv2/test/bedroom_0114/rgb_1163_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1163_disparity.npz
504
+ NYUv2/test/bedroom_0114/rgb_1164_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1164_disparity.npz
505
+ NYUv2/test/bedroom_0115/rgb_1165_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1165_disparity.npz
506
+ NYUv2/test/bedroom_0115/rgb_1166_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1166_disparity.npz
507
+ NYUv2/test/bedroom_0115/rgb_1167_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1167_disparity.npz
508
+ NYUv2/test/bedroom_0117/rgb_1170_rgb_left.mp4,NYUv2/test/bedroom_0117/rgb_1170_disparity.npz
509
+ NYUv2/test/bedroom_0117/rgb_1171_rgb_left.mp4,NYUv2/test/bedroom_0117/rgb_1171_disparity.npz
510
+ NYUv2/test/bedroom_0119/rgb_1174_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1174_disparity.npz
511
+ NYUv2/test/bedroom_0119/rgb_1175_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1175_disparity.npz
512
+ NYUv2/test/bedroom_0119/rgb_1176_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1176_disparity.npz
513
+ NYUv2/test/bedroom_0121/rgb_1179_rgb_left.mp4,NYUv2/test/bedroom_0121/rgb_1179_disparity.npz
514
+ NYUv2/test/bedroom_0121/rgb_1180_rgb_left.mp4,NYUv2/test/bedroom_0121/rgb_1180_disparity.npz
515
+ NYUv2/test/bedroom_0122/rgb_1181_rgb_left.mp4,NYUv2/test/bedroom_0122/rgb_1181_disparity.npz
516
+ NYUv2/test/bedroom_0122/rgb_1182_rgb_left.mp4,NYUv2/test/bedroom_0122/rgb_1182_disparity.npz
517
+ NYUv2/test/bedroom_0123/rgb_1183_rgb_left.mp4,NYUv2/test/bedroom_0123/rgb_1183_disparity.npz
518
+ NYUv2/test/bedroom_0123/rgb_1184_rgb_left.mp4,NYUv2/test/bedroom_0123/rgb_1184_disparity.npz
519
+ NYUv2/test/bedroom_0127/rgb_1192_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1192_disparity.npz
520
+ NYUv2/test/bedroom_0127/rgb_1193_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1193_disparity.npz
521
+ NYUv2/test/bedroom_0127/rgb_1194_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1194_disparity.npz
522
+ NYUv2/test/bedroom_0128/rgb_1195_rgb_left.mp4,NYUv2/test/bedroom_0128/rgb_1195_disparity.npz
523
+ NYUv2/test/bedroom_0128/rgb_1196_rgb_left.mp4,NYUv2/test/bedroom_0128/rgb_1196_disparity.npz
524
+ NYUv2/test/living_room_0025/rgb_1201_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1201_disparity.npz
525
+ NYUv2/test/living_room_0025/rgb_1202_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1202_disparity.npz
526
+ NYUv2/test/living_room_0025/rgb_1203_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1203_disparity.npz
527
+ NYUv2/test/living_room_0026/rgb_1204_rgb_left.mp4,NYUv2/test/living_room_0026/rgb_1204_disparity.npz
528
+ NYUv2/test/living_room_0026/rgb_1205_rgb_left.mp4,NYUv2/test/living_room_0026/rgb_1205_disparity.npz
529
+ NYUv2/test/living_room_0027/rgb_1206_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1206_disparity.npz
530
+ NYUv2/test/living_room_0027/rgb_1207_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1207_disparity.npz
531
+ NYUv2/test/living_room_0027/rgb_1208_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1208_disparity.npz
532
+ NYUv2/test/living_room_0028/rgb_1209_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1209_disparity.npz
533
+ NYUv2/test/living_room_0028/rgb_1210_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1210_disparity.npz
534
+ NYUv2/test/living_room_0028/rgb_1211_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1211_disparity.npz
535
+ NYUv2/test/living_room_0028/rgb_1212_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1212_disparity.npz
536
+ NYUv2/test/living_room_0030/rgb_1216_rgb_left.mp4,NYUv2/test/living_room_0030/rgb_1216_disparity.npz
537
+ NYUv2/test/living_room_0030/rgb_1217_rgb_left.mp4,NYUv2/test/living_room_0030/rgb_1217_disparity.npz
538
+ NYUv2/test/living_room_0031/rgb_1218_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1218_disparity.npz
539
+ NYUv2/test/living_room_0031/rgb_1219_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1219_disparity.npz
540
+ NYUv2/test/living_room_0031/rgb_1220_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1220_disparity.npz
541
+ NYUv2/test/living_room_0034/rgb_1226_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1226_disparity.npz
542
+ NYUv2/test/living_room_0034/rgb_1227_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1227_disparity.npz
543
+ NYUv2/test/living_room_0034/rgb_1228_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1228_disparity.npz
544
+ NYUv2/test/living_room_0034/rgb_1229_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1229_disparity.npz
545
+ NYUv2/test/living_room_0034/rgb_1230_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1230_disparity.npz
546
+ NYUv2/test/living_room_0036/rgb_1233_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1233_disparity.npz
547
+ NYUv2/test/living_room_0036/rgb_1234_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1234_disparity.npz
548
+ NYUv2/test/living_room_0036/rgb_1235_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1235_disparity.npz
549
+ NYUv2/test/living_room_0041/rgb_1247_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1247_disparity.npz
550
+ NYUv2/test/living_room_0041/rgb_1248_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1248_disparity.npz
551
+ NYUv2/test/living_room_0041/rgb_1249_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1249_disparity.npz
552
+ NYUv2/test/living_room_0041/rgb_1250_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1250_disparity.npz
553
+ NYUv2/test/living_room_0043/rgb_1254_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1254_disparity.npz
554
+ NYUv2/test/living_room_0043/rgb_1255_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1255_disparity.npz
555
+ NYUv2/test/living_room_0043/rgb_1256_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1256_disparity.npz
556
+ NYUv2/test/living_room_0043/rgb_1257_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1257_disparity.npz
557
+ NYUv2/test/living_room_0044/rgb_1258_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1258_disparity.npz
558
+ NYUv2/test/living_room_0044/rgb_1259_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1259_disparity.npz
559
+ NYUv2/test/living_room_0044/rgb_1260_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1260_disparity.npz
560
+ NYUv2/test/living_room_0044/rgb_1261_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1261_disparity.npz
561
+ NYUv2/test/living_room_0045/rgb_1262_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1262_disparity.npz
562
+ NYUv2/test/living_room_0045/rgb_1263_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1263_disparity.npz
563
+ NYUv2/test/living_room_0045/rgb_1264_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1264_disparity.npz
564
+ NYUv2/test/living_room_0045/rgb_1265_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1265_disparity.npz
565
+ NYUv2/test/living_room_0048/rgb_1275_rgb_left.mp4,NYUv2/test/living_room_0048/rgb_1275_disparity.npz
566
+ NYUv2/test/living_room_0048/rgb_1276_rgb_left.mp4,NYUv2/test/living_room_0048/rgb_1276_disparity.npz
567
+ NYUv2/test/living_room_0049/rgb_1277_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1277_disparity.npz
568
+ NYUv2/test/living_room_0049/rgb_1278_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1278_disparity.npz
569
+ NYUv2/test/living_room_0049/rgb_1279_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1279_disparity.npz
570
+ NYUv2/test/living_room_0049/rgb_1280_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1280_disparity.npz
571
+ NYUv2/test/living_room_0051/rgb_1285_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1285_disparity.npz
572
+ NYUv2/test/living_room_0051/rgb_1286_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1286_disparity.npz
573
+ NYUv2/test/living_room_0051/rgb_1287_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1287_disparity.npz
574
+ NYUv2/test/living_room_0051/rgb_1288_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1288_disparity.npz
575
+ NYUv2/test/living_room_0052/rgb_1289_rgb_left.mp4,NYUv2/test/living_room_0052/rgb_1289_disparity.npz
576
+ NYUv2/test/living_room_0052/rgb_1290_rgb_left.mp4,NYUv2/test/living_room_0052/rgb_1290_disparity.npz
577
+ NYUv2/test/living_room_0053/rgb_1291_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1291_disparity.npz
578
+ NYUv2/test/living_room_0053/rgb_1292_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1292_disparity.npz
579
+ NYUv2/test/living_room_0053/rgb_1293_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1293_disparity.npz
580
+ NYUv2/test/living_room_0054/rgb_1294_rgb_left.mp4,NYUv2/test/living_room_0054/rgb_1294_disparity.npz
581
+ NYUv2/test/living_room_0054/rgb_1295_rgb_left.mp4,NYUv2/test/living_room_0054/rgb_1295_disparity.npz
582
+ NYUv2/test/living_room_0056/rgb_1297_rgb_left.mp4,NYUv2/test/living_room_0056/rgb_1297_disparity.npz
583
+ NYUv2/test/living_room_0057/rgb_1298_rgb_left.mp4,NYUv2/test/living_room_0057/rgb_1298_disparity.npz
584
+ NYUv2/test/living_room_0057/rgb_1299_rgb_left.mp4,NYUv2/test/living_room_0057/rgb_1299_disparity.npz
585
+ NYUv2/test/living_room_0059/rgb_1302_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1302_disparity.npz
586
+ NYUv2/test/living_room_0059/rgb_1303_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1303_disparity.npz
587
+ NYUv2/test/living_room_0059/rgb_1304_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1304_disparity.npz
588
+ NYUv2/test/living_room_0059/rgb_1305_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1305_disparity.npz
589
+ NYUv2/test/living_room_0060/rgb_1306_rgb_left.mp4,NYUv2/test/living_room_0060/rgb_1306_disparity.npz
590
+ NYUv2/test/living_room_0060/rgb_1307_rgb_left.mp4,NYUv2/test/living_room_0060/rgb_1307_disparity.npz
591
+ NYUv2/test/living_room_0061/rgb_1308_rgb_left.mp4,NYUv2/test/living_room_0061/rgb_1308_disparity.npz
592
+ NYUv2/test/living_room_0064/rgb_1314_rgb_left.mp4,NYUv2/test/living_room_0064/rgb_1314_disparity.npz
593
+ NYUv2/test/living_room_0066/rgb_1315_rgb_left.mp4,NYUv2/test/living_room_0066/rgb_1315_disparity.npz
594
+ NYUv2/test/living_room_0072/rgb_1329_rgb_left.mp4,NYUv2/test/living_room_0072/rgb_1329_disparity.npz
595
+ NYUv2/test/living_room_0075/rgb_1330_rgb_left.mp4,NYUv2/test/living_room_0075/rgb_1330_disparity.npz
596
+ NYUv2/test/living_room_0075/rgb_1331_rgb_left.mp4,NYUv2/test/living_room_0075/rgb_1331_disparity.npz
597
+ NYUv2/test/living_room_0076/rgb_1332_rgb_left.mp4,NYUv2/test/living_room_0076/rgb_1332_disparity.npz
598
+ NYUv2/test/living_room_0079/rgb_1335_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1335_disparity.npz
599
+ NYUv2/test/living_room_0079/rgb_1336_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1336_disparity.npz
600
+ NYUv2/test/living_room_0079/rgb_1337_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1337_disparity.npz
601
+ NYUv2/test/living_room_0080/rgb_1338_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1338_disparity.npz
602
+ NYUv2/test/living_room_0080/rgb_1339_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1339_disparity.npz
603
+ NYUv2/test/living_room_0080/rgb_1340_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1340_disparity.npz
604
+ NYUv2/test/dining_room_0003/rgb_1347_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1347_disparity.npz
605
+ NYUv2/test/dining_room_0003/rgb_1348_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1348_disparity.npz
606
+ NYUv2/test/dining_room_0003/rgb_1349_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1349_disparity.npz
607
+ NYUv2/test/dining_room_0005/rgb_1353_rgb_left.mp4,NYUv2/test/dining_room_0005/rgb_1353_disparity.npz
608
+ NYUv2/test/dining_room_0005/rgb_1354_rgb_left.mp4,NYUv2/test/dining_room_0005/rgb_1354_disparity.npz
609
+ NYUv2/test/dining_room_0006/rgb_1355_rgb_left.mp4,NYUv2/test/dining_room_0006/rgb_1355_disparity.npz
610
+ NYUv2/test/dining_room_0006/rgb_1356_rgb_left.mp4,NYUv2/test/dining_room_0006/rgb_1356_disparity.npz
611
+ NYUv2/test/dining_room_0009/rgb_1364_rgb_left.mp4,NYUv2/test/dining_room_0009/rgb_1364_disparity.npz
612
+ NYUv2/test/dining_room_0009/rgb_1365_rgb_left.mp4,NYUv2/test/dining_room_0009/rgb_1365_disparity.npz
613
+ NYUv2/test/dining_room_0011/rgb_1368_rgb_left.mp4,NYUv2/test/dining_room_0011/rgb_1368_disparity.npz
614
+ NYUv2/test/dining_room_0011/rgb_1369_rgb_left.mp4,NYUv2/test/dining_room_0011/rgb_1369_disparity.npz
615
+ NYUv2/test/dining_room_0017/rgb_1384_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1384_disparity.npz
616
+ NYUv2/test/dining_room_0017/rgb_1385_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1385_disparity.npz
617
+ NYUv2/test/dining_room_0017/rgb_1386_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1386_disparity.npz
618
+ NYUv2/test/dining_room_0018/rgb_1387_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1387_disparity.npz
619
+ NYUv2/test/dining_room_0018/rgb_1388_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1388_disparity.npz
620
+ NYUv2/test/dining_room_0018/rgb_1389_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1389_disparity.npz
621
+ NYUv2/test/dining_room_0018/rgb_1390_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1390_disparity.npz
622
+ NYUv2/test/dining_room_0018/rgb_1391_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1391_disparity.npz
623
+ NYUv2/test/dining_room_0020/rgb_1394_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1394_disparity.npz
624
+ NYUv2/test/dining_room_0020/rgb_1395_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1395_disparity.npz
625
+ NYUv2/test/dining_room_0020/rgb_1396_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1396_disparity.npz
626
+ NYUv2/test/dining_room_0021/rgb_1397_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1397_disparity.npz
627
+ NYUv2/test/dining_room_0021/rgb_1398_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1398_disparity.npz
628
+ NYUv2/test/dining_room_0021/rgb_1399_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1399_disparity.npz
629
+ NYUv2/test/dining_room_0022/rgb_1400_rgb_left.mp4,NYUv2/test/dining_room_0022/rgb_1400_disparity.npz
630
+ NYUv2/test/dining_room_0022/rgb_1401_rgb_left.mp4,NYUv2/test/dining_room_0022/rgb_1401_disparity.npz
631
+ NYUv2/test/dining_room_0025/rgb_1407_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1407_disparity.npz
632
+ NYUv2/test/dining_room_0025/rgb_1408_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1408_disparity.npz
633
+ NYUv2/test/dining_room_0025/rgb_1409_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1409_disparity.npz
634
+ NYUv2/test/dining_room_0025/rgb_1410_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1410_disparity.npz
635
+ NYUv2/test/dining_room_0025/rgb_1411_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1411_disparity.npz
636
+ NYUv2/test/dining_room_0026/rgb_1412_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1412_disparity.npz
637
+ NYUv2/test/dining_room_0026/rgb_1413_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1413_disparity.npz
638
+ NYUv2/test/dining_room_0026/rgb_1414_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1414_disparity.npz
639
+ NYUv2/test/dining_room_0030/rgb_1421_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1421_disparity.npz
640
+ NYUv2/test/dining_room_0030/rgb_1422_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1422_disparity.npz
641
+ NYUv2/test/dining_room_0030/rgb_1423_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1423_disparity.npz
642
+ NYUv2/test/dining_room_0030/rgb_1424_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1424_disparity.npz
643
+ NYUv2/test/dining_room_0032/rgb_1430_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1430_disparity.npz
644
+ NYUv2/test/dining_room_0032/rgb_1431_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1431_disparity.npz
645
+ NYUv2/test/dining_room_0032/rgb_1432_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1432_disparity.npz
646
+ NYUv2/test/dining_room_0032/rgb_1433_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1433_disparity.npz
647
+ NYUv2/test/dining_room_0035/rgb_1441_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1441_disparity.npz
648
+ NYUv2/test/dining_room_0035/rgb_1442_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1442_disparity.npz
649
+ NYUv2/test/dining_room_0035/rgb_1443_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1443_disparity.npz
650
+ NYUv2/test/dining_room_0036/rgb_1444_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1444_disparity.npz
651
+ NYUv2/test/dining_room_0036/rgb_1445_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1445_disparity.npz
652
+ NYUv2/test/dining_room_0036/rgb_1446_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1446_disparity.npz
653
+ NYUv2/test/dining_room_0036/rgb_1447_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1447_disparity.npz
654
+ NYUv2/test/dining_room_0036/rgb_1448_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1448_disparity.npz
655
+ NYUv2/test/dining_room_0036/rgb_1449_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1449_disparity.npz
benchmark/csv/meta_scannet_test.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath_left,filepath_disparity
2
+ scannet/scene0707_00_rgb_left.mp4,scannet/scene0707_00_disparity.npz
3
+ scannet/scene0708_00_rgb_left.mp4,scannet/scene0708_00_disparity.npz
4
+ scannet/scene0709_00_rgb_left.mp4,scannet/scene0709_00_disparity.npz
5
+ scannet/scene0710_00_rgb_left.mp4,scannet/scene0710_00_disparity.npz
6
+ scannet/scene0711_00_rgb_left.mp4,scannet/scene0711_00_disparity.npz
7
+ scannet/scene0712_00_rgb_left.mp4,scannet/scene0712_00_disparity.npz
8
+ scannet/scene0713_00_rgb_left.mp4,scannet/scene0713_00_disparity.npz
9
+ scannet/scene0714_00_rgb_left.mp4,scannet/scene0714_00_disparity.npz
10
+ scannet/scene0715_00_rgb_left.mp4,scannet/scene0715_00_disparity.npz
11
+ scannet/scene0716_00_rgb_left.mp4,scannet/scene0716_00_disparity.npz
12
+ scannet/scene0717_00_rgb_left.mp4,scannet/scene0717_00_disparity.npz
13
+ scannet/scene0718_00_rgb_left.mp4,scannet/scene0718_00_disparity.npz
14
+ scannet/scene0719_00_rgb_left.mp4,scannet/scene0719_00_disparity.npz
15
+ scannet/scene0720_00_rgb_left.mp4,scannet/scene0720_00_disparity.npz
16
+ scannet/scene0721_00_rgb_left.mp4,scannet/scene0721_00_disparity.npz
17
+ scannet/scene0722_00_rgb_left.mp4,scannet/scene0722_00_disparity.npz
18
+ scannet/scene0723_00_rgb_left.mp4,scannet/scene0723_00_disparity.npz
19
+ scannet/scene0724_00_rgb_left.mp4,scannet/scene0724_00_disparity.npz
20
+ scannet/scene0725_00_rgb_left.mp4,scannet/scene0725_00_disparity.npz
21
+ scannet/scene0726_00_rgb_left.mp4,scannet/scene0726_00_disparity.npz
22
+ scannet/scene0727_00_rgb_left.mp4,scannet/scene0727_00_disparity.npz
23
+ scannet/scene0728_00_rgb_left.mp4,scannet/scene0728_00_disparity.npz
24
+ scannet/scene0729_00_rgb_left.mp4,scannet/scene0729_00_disparity.npz
25
+ scannet/scene0730_00_rgb_left.mp4,scannet/scene0730_00_disparity.npz
26
+ scannet/scene0731_00_rgb_left.mp4,scannet/scene0731_00_disparity.npz
27
+ scannet/scene0732_00_rgb_left.mp4,scannet/scene0732_00_disparity.npz
28
+ scannet/scene0733_00_rgb_left.mp4,scannet/scene0733_00_disparity.npz
29
+ scannet/scene0734_00_rgb_left.mp4,scannet/scene0734_00_disparity.npz
30
+ scannet/scene0735_00_rgb_left.mp4,scannet/scene0735_00_disparity.npz
31
+ scannet/scene0736_00_rgb_left.mp4,scannet/scene0736_00_disparity.npz
32
+ scannet/scene0737_00_rgb_left.mp4,scannet/scene0737_00_disparity.npz
33
+ scannet/scene0738_00_rgb_left.mp4,scannet/scene0738_00_disparity.npz
34
+ scannet/scene0739_00_rgb_left.mp4,scannet/scene0739_00_disparity.npz
35
+ scannet/scene0740_00_rgb_left.mp4,scannet/scene0740_00_disparity.npz
36
+ scannet/scene0741_00_rgb_left.mp4,scannet/scene0741_00_disparity.npz
37
+ scannet/scene0742_00_rgb_left.mp4,scannet/scene0742_00_disparity.npz
38
+ scannet/scene0743_00_rgb_left.mp4,scannet/scene0743_00_disparity.npz
39
+ scannet/scene0744_00_rgb_left.mp4,scannet/scene0744_00_disparity.npz
40
+ scannet/scene0745_00_rgb_left.mp4,scannet/scene0745_00_disparity.npz
41
+ scannet/scene0746_00_rgb_left.mp4,scannet/scene0746_00_disparity.npz
42
+ scannet/scene0747_00_rgb_left.mp4,scannet/scene0747_00_disparity.npz
43
+ scannet/scene0748_00_rgb_left.mp4,scannet/scene0748_00_disparity.npz
44
+ scannet/scene0749_00_rgb_left.mp4,scannet/scene0749_00_disparity.npz
45
+ scannet/scene0750_00_rgb_left.mp4,scannet/scene0750_00_disparity.npz
46
+ scannet/scene0751_00_rgb_left.mp4,scannet/scene0751_00_disparity.npz
47
+ scannet/scene0752_00_rgb_left.mp4,scannet/scene0752_00_disparity.npz
48
+ scannet/scene0753_00_rgb_left.mp4,scannet/scene0753_00_disparity.npz
49
+ scannet/scene0754_00_rgb_left.mp4,scannet/scene0754_00_disparity.npz
50
+ scannet/scene0755_00_rgb_left.mp4,scannet/scene0755_00_disparity.npz
51
+ scannet/scene0756_00_rgb_left.mp4,scannet/scene0756_00_disparity.npz
52
+ scannet/scene0757_00_rgb_left.mp4,scannet/scene0757_00_disparity.npz
53
+ scannet/scene0758_00_rgb_left.mp4,scannet/scene0758_00_disparity.npz
54
+ scannet/scene0759_00_rgb_left.mp4,scannet/scene0759_00_disparity.npz
55
+ scannet/scene0760_00_rgb_left.mp4,scannet/scene0760_00_disparity.npz
56
+ scannet/scene0761_00_rgb_left.mp4,scannet/scene0761_00_disparity.npz
57
+ scannet/scene0762_00_rgb_left.mp4,scannet/scene0762_00_disparity.npz
58
+ scannet/scene0763_00_rgb_left.mp4,scannet/scene0763_00_disparity.npz
59
+ scannet/scene0764_00_rgb_left.mp4,scannet/scene0764_00_disparity.npz
60
+ scannet/scene0765_00_rgb_left.mp4,scannet/scene0765_00_disparity.npz
61
+ scannet/scene0766_00_rgb_left.mp4,scannet/scene0766_00_disparity.npz
62
+ scannet/scene0767_00_rgb_left.mp4,scannet/scene0767_00_disparity.npz
63
+ scannet/scene0768_00_rgb_left.mp4,scannet/scene0768_00_disparity.npz
64
+ scannet/scene0769_00_rgb_left.mp4,scannet/scene0769_00_disparity.npz
65
+ scannet/scene0770_00_rgb_left.mp4,scannet/scene0770_00_disparity.npz
66
+ scannet/scene0771_00_rgb_left.mp4,scannet/scene0771_00_disparity.npz
67
+ scannet/scene0772_00_rgb_left.mp4,scannet/scene0772_00_disparity.npz
68
+ scannet/scene0773_00_rgb_left.mp4,scannet/scene0773_00_disparity.npz
69
+ scannet/scene0774_00_rgb_left.mp4,scannet/scene0774_00_disparity.npz
70
+ scannet/scene0775_00_rgb_left.mp4,scannet/scene0775_00_disparity.npz
71
+ scannet/scene0776_00_rgb_left.mp4,scannet/scene0776_00_disparity.npz
72
+ scannet/scene0777_00_rgb_left.mp4,scannet/scene0777_00_disparity.npz
73
+ scannet/scene0778_00_rgb_left.mp4,scannet/scene0778_00_disparity.npz
74
+ scannet/scene0779_00_rgb_left.mp4,scannet/scene0779_00_disparity.npz
75
+ scannet/scene0780_00_rgb_left.mp4,scannet/scene0780_00_disparity.npz
76
+ scannet/scene0781_00_rgb_left.mp4,scannet/scene0781_00_disparity.npz
77
+ scannet/scene0782_00_rgb_left.mp4,scannet/scene0782_00_disparity.npz
78
+ scannet/scene0783_00_rgb_left.mp4,scannet/scene0783_00_disparity.npz
79
+ scannet/scene0784_00_rgb_left.mp4,scannet/scene0784_00_disparity.npz
80
+ scannet/scene0785_00_rgb_left.mp4,scannet/scene0785_00_disparity.npz
81
+ scannet/scene0786_00_rgb_left.mp4,scannet/scene0786_00_disparity.npz
82
+ scannet/scene0787_00_rgb_left.mp4,scannet/scene0787_00_disparity.npz
83
+ scannet/scene0788_00_rgb_left.mp4,scannet/scene0788_00_disparity.npz
84
+ scannet/scene0789_00_rgb_left.mp4,scannet/scene0789_00_disparity.npz
85
+ scannet/scene0790_00_rgb_left.mp4,scannet/scene0790_00_disparity.npz
86
+ scannet/scene0791_00_rgb_left.mp4,scannet/scene0791_00_disparity.npz
87
+ scannet/scene0792_00_rgb_left.mp4,scannet/scene0792_00_disparity.npz
88
+ scannet/scene0793_00_rgb_left.mp4,scannet/scene0793_00_disparity.npz
89
+ scannet/scene0794_00_rgb_left.mp4,scannet/scene0794_00_disparity.npz
90
+ scannet/scene0795_00_rgb_left.mp4,scannet/scene0795_00_disparity.npz
91
+ scannet/scene0796_00_rgb_left.mp4,scannet/scene0796_00_disparity.npz
92
+ scannet/scene0797_00_rgb_left.mp4,scannet/scene0797_00_disparity.npz
93
+ scannet/scene0798_00_rgb_left.mp4,scannet/scene0798_00_disparity.npz
94
+ scannet/scene0799_00_rgb_left.mp4,scannet/scene0799_00_disparity.npz
95
+ scannet/scene0800_00_rgb_left.mp4,scannet/scene0800_00_disparity.npz
96
+ scannet/scene0801_00_rgb_left.mp4,scannet/scene0801_00_disparity.npz
97
+ scannet/scene0802_00_rgb_left.mp4,scannet/scene0802_00_disparity.npz
98
+ scannet/scene0803_00_rgb_left.mp4,scannet/scene0803_00_disparity.npz
99
+ scannet/scene0804_00_rgb_left.mp4,scannet/scene0804_00_disparity.npz
100
+ scannet/scene0805_00_rgb_left.mp4,scannet/scene0805_00_disparity.npz
101
+ scannet/scene0806_00_rgb_left.mp4,scannet/scene0806_00_disparity.npz
benchmark/csv/meta_sintel.csv ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath_left,filepath_disparity
2
+ sintel/ambush_5_rgb_left.mp4,sintel/ambush_5_disparity.npz
3
+ sintel/bamboo_2_rgb_left.mp4,sintel/bamboo_2_disparity.npz
4
+ sintel/mountain_1_rgb_left.mp4,sintel/mountain_1_disparity.npz
5
+ sintel/bamboo_1_rgb_left.mp4,sintel/bamboo_1_disparity.npz
6
+ sintel/shaman_2_rgb_left.mp4,sintel/shaman_2_disparity.npz
7
+ sintel/ambush_6_rgb_left.mp4,sintel/ambush_6_disparity.npz
8
+ sintel/bandage_1_rgb_left.mp4,sintel/bandage_1_disparity.npz
9
+ sintel/alley_1_rgb_left.mp4,sintel/alley_1_disparity.npz
10
+ sintel/temple_3_rgb_left.mp4,sintel/temple_3_disparity.npz
11
+ sintel/shaman_3_rgb_left.mp4,sintel/shaman_3_disparity.npz
12
+ sintel/ambush_2_rgb_left.mp4,sintel/ambush_2_disparity.npz
13
+ sintel/cave_4_rgb_left.mp4,sintel/cave_4_disparity.npz
14
+ sintel/cave_2_rgb_left.mp4,sintel/cave_2_disparity.npz
15
+ sintel/alley_2_rgb_left.mp4,sintel/alley_2_disparity.npz
16
+ sintel/market_5_rgb_left.mp4,sintel/market_5_disparity.npz
17
+ sintel/sleeping_2_rgb_left.mp4,sintel/sleeping_2_disparity.npz
18
+ sintel/ambush_4_rgb_left.mp4,sintel/ambush_4_disparity.npz
19
+ sintel/sleeping_1_rgb_left.mp4,sintel/sleeping_1_disparity.npz
20
+ sintel/market_6_rgb_left.mp4,sintel/market_6_disparity.npz
21
+ sintel/market_2_rgb_left.mp4,sintel/market_2_disparity.npz
22
+ sintel/bandage_2_rgb_left.mp4,sintel/bandage_2_disparity.npz
23
+ sintel/ambush_7_rgb_left.mp4,sintel/ambush_7_disparity.npz
24
+ sintel/temple_2_rgb_left.mp4,sintel/temple_2_disparity.npz
benchmark/dataset_extract/dataset_extract_bonn.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import os.path as osp
4
+ from PIL import Image
5
+ from tqdm import tqdm
6
+ import imageio
7
+ import csv
8
+
9
+
10
+ def depth_read(filename):
11
+ # loads depth map D from png file
12
+ # and returns it as a numpy array
13
+
14
+ depth_png = np.asarray(Image.open(filename))
15
+ # make sure we have a proper 16bit depth map here.. not 8bit!
16
+ assert np.max(depth_png) > 255
17
+
18
+ depth = depth_png.astype(np.float64) / 5000.0
19
+ depth[depth_png == 0] = -1.0
20
+ return depth
21
+
22
+
23
+ def extract_bonn(
24
+ root,
25
+ depth_root,
26
+ sample_len=-1,
27
+ csv_save_path="",
28
+ datatset_name="",
29
+ saved_rgb_dir="",
30
+ saved_disp_dir="",
31
+ start_frame=0,
32
+ end_frame=110,
33
+ ):
34
+ scenes_names = os.listdir(depth_root)
35
+ all_samples = []
36
+ for i, seq_name in enumerate(tqdm(scenes_names)):
37
+ # load all images
38
+ all_img_names = os.listdir(osp.join(depth_root, seq_name, "rgb"))
39
+ all_img_names = [x for x in all_img_names if x.endswith(".png")]
40
+ print(f"sequence frame number: {len(all_img_names)}")
41
+
42
+ # for not zero padding image name
43
+ all_img_names.sort()
44
+ all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
45
+ all_img_names = all_img_names[start_frame:end_frame]
46
+
47
+ all_depth_names = os.listdir(osp.join(depth_root, seq_name, "depth"))
48
+ all_depth_names = [x for x in all_depth_names if x.endswith(".png")]
49
+ print(f"sequence depth number: {len(all_depth_names)}")
50
+
51
+ # for not zero padding image name
52
+ all_depth_names.sort()
53
+ all_depth_names = sorted(
54
+ all_depth_names, key=lambda x: int(x.split(".")[0][-4:])
55
+ )
56
+ all_depth_names = all_depth_names[start_frame:end_frame]
57
+
58
+ seq_len = len(all_img_names)
59
+ step = sample_len if sample_len > 0 else seq_len
60
+
61
+ for ref_idx in range(0, seq_len, step):
62
+ print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
63
+
64
+ video_imgs = []
65
+ video_depths = []
66
+
67
+ if (ref_idx + step) <= seq_len:
68
+ ref_e = ref_idx + step
69
+ else:
70
+ continue
71
+
72
+ # for idx in range(ref_idx, ref_idx + step):
73
+ for idx in range(ref_idx, ref_e):
74
+ im_path = osp.join(root, seq_name, "rgb", all_img_names[idx])
75
+ depth_path = osp.join(
76
+ depth_root, seq_name, "depth", all_depth_names[idx]
77
+ )
78
+
79
+ depth = depth_read(depth_path)
80
+ disp = depth
81
+
82
+ video_depths.append(disp)
83
+ video_imgs.append(np.array(Image.open(im_path)))
84
+
85
+ disp_video = np.array(video_depths)[:, None] # [:, 0:1, :, :, 0]
86
+ img_video = np.array(video_imgs)[..., 0:3] # [:, 0, :, :, 0:3]
87
+
88
+ print(disp_video.max(), disp_video.min())
89
+
90
+ def even_or_odd(num):
91
+ if num % 2 == 0:
92
+ return num
93
+ else:
94
+ return num - 1
95
+
96
+ # print(disp_video.shape)
97
+ # print(img_video.shape)
98
+ height = disp_video.shape[-2]
99
+ width = disp_video.shape[-1]
100
+ height = even_or_odd(height)
101
+ width = even_or_odd(width)
102
+ disp_video = disp_video[:, :, 0:height, 0:width]
103
+ img_video = img_video[:, 0:height, 0:width]
104
+
105
+ data_root = saved_rgb_dir + datatset_name
106
+ disp_root = saved_disp_dir + datatset_name
107
+ os.makedirs(data_root, exist_ok=True)
108
+ os.makedirs(disp_root, exist_ok=True)
109
+
110
+ img_video_dir = data_root
111
+ disp_video_dir = disp_root
112
+
113
+ img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
114
+ disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
115
+
116
+ imageio.mimsave(
117
+ img_video_path, img_video, fps=15, quality=9, macro_block_size=1
118
+ )
119
+ np.savez(disp_video_path, disparity=disp_video)
120
+
121
+ sample = {}
122
+ sample["filepath_left"] = os.path.join(
123
+ f"{datatset_name}/{seq_name}_rgb_left.mp4"
124
+ ) # img_video_path
125
+ sample["filepath_disparity"] = os.path.join(
126
+ f"{datatset_name}/{seq_name}_disparity.npz"
127
+ ) # disp_video_path
128
+
129
+ all_samples.append(sample)
130
+
131
+ # save csv file
132
+
133
+ filename_ = csv_save_path
134
+ os.makedirs(os.path.dirname(filename_), exist_ok=True)
135
+ fields = ["filepath_left", "filepath_disparity"]
136
+ with open(filename_, "w") as csvfile:
137
+ writer = csv.DictWriter(csvfile, fieldnames=fields)
138
+ writer.writeheader()
139
+ writer.writerows(all_samples)
140
+
141
+ print(f"{filename_} has been saved.")
142
+
143
+
144
+ if __name__ == "__main__":
145
+ extract_bonn(
146
+ root="path/to/Bonn-RGBD",
147
+ depth_root="path/to/Bonn-RGBD",
148
+ saved_rgb_dir="./benchmark/datasets/",
149
+ saved_disp_dir="./benchmark/datasets/",
150
+ csv_save_path=f"./benchmark/datasets/bonn.csv",
151
+ sample_len=-1,
152
+ datatset_name="bonn",
153
+ start_frame=30,
154
+ end_frame=140,
155
+ )
benchmark/dataset_extract/dataset_extract_kitti.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import os.path as osp
4
+ from PIL import Image
5
+ from tqdm import tqdm
6
+ import csv
7
+ import imageio
8
+
9
+
10
+ def depth_read(filename):
11
+ # loads depth map D from png file
12
+ # and returns it as a numpy array,
13
+
14
+ depth_png = np.array(Image.open(filename), dtype=int)
15
+ # make sure we have a proper 16bit depth map here.. not 8bit!
16
+ assert np.max(depth_png) > 255
17
+
18
+ depth = depth_png.astype(np.float64) / 256.0
19
+ depth[depth_png == 0] = -1.0
20
+ return depth
21
+
22
+
23
+ def extract_kitti(
24
+ root,
25
+ depth_root,
26
+ sample_len=-1,
27
+ csv_save_path="",
28
+ datatset_name="",
29
+ saved_rgb_dir="",
30
+ saved_disp_dir="",
31
+ start_frame=0,
32
+ end_frame=110,
33
+ ):
34
+ scenes_names = os.listdir(depth_root)
35
+ all_samples = []
36
+ for i, seq_name in enumerate(tqdm(scenes_names)):
37
+ all_img_names = os.listdir(
38
+ osp.join(depth_root, seq_name, "proj_depth/groundtruth/image_02")
39
+ )
40
+ all_img_names = [x for x in all_img_names if x.endswith(".png")]
41
+ print(f"sequence frame number: {len(all_img_names)}")
42
+
43
+ all_img_names.sort()
44
+ all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
45
+ all_img_names = all_img_names[start_frame:end_frame]
46
+
47
+ seq_len = len(all_img_names)
48
+ step = sample_len if sample_len > 0 else seq_len
49
+
50
+ for ref_idx in range(0, seq_len, step):
51
+ print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
52
+
53
+ video_imgs = []
54
+ video_depths = []
55
+
56
+ if (ref_idx + step) <= seq_len:
57
+ ref_e = ref_idx + step
58
+ else:
59
+ continue
60
+
61
+ for idx in range(ref_idx, ref_e):
62
+ im_path = osp.join(
63
+ root, seq_name[0:10], seq_name, "image_02/data", all_img_names[idx]
64
+ )
65
+ depth_path = osp.join(
66
+ depth_root,
67
+ seq_name,
68
+ "proj_depth/groundtruth/image_02",
69
+ all_img_names[idx],
70
+ )
71
+
72
+ depth = depth_read(depth_path)
73
+ disp = depth
74
+
75
+ video_depths.append(disp)
76
+ video_imgs.append(np.array(Image.open(im_path)))
77
+
78
+ disp_video = np.array(video_depths)[:, None]
79
+ img_video = np.array(video_imgs)[..., 0:3]
80
+
81
+ def even_or_odd(num):
82
+ if num % 2 == 0:
83
+ return num
84
+ else:
85
+ return num - 1
86
+
87
+ height = disp_video.shape[-2]
88
+ width = disp_video.shape[-1]
89
+ height = even_or_odd(height)
90
+ width = even_or_odd(width)
91
+ disp_video = disp_video[:, :, 0:height, 0:width]
92
+ img_video = img_video[:, 0:height, 0:width]
93
+
94
+ data_root = saved_rgb_dir + datatset_name
95
+ disp_root = saved_disp_dir + datatset_name
96
+ os.makedirs(data_root, exist_ok=True)
97
+ os.makedirs(disp_root, exist_ok=True)
98
+
99
+ img_video_dir = data_root
100
+ disp_video_dir = disp_root
101
+
102
+ img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
103
+ disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
104
+
105
+ imageio.mimsave(
106
+ img_video_path, img_video, fps=15, quality=10, macro_block_size=1
107
+ )
108
+ np.savez(disp_video_path, disparity=disp_video)
109
+
110
+ sample = {}
111
+ sample["filepath_left"] = os.path.join(f"KITTI/{seq_name}_rgb_left.mp4")
112
+ sample["filepath_disparity"] = os.path.join(
113
+ f"KITTI/{seq_name}_disparity.npz"
114
+ )
115
+
116
+ all_samples.append(sample)
117
+
118
+ filename_ = csv_save_path
119
+ os.makedirs(os.path.dirname(filename_), exist_ok=True)
120
+ fields = ["filepath_left", "filepath_disparity"]
121
+ with open(filename_, "w") as csvfile:
122
+ writer = csv.DictWriter(csvfile, fieldnames=fields)
123
+ writer.writeheader()
124
+ writer.writerows(all_samples)
125
+
126
+ print(f"{filename_} has been saved.")
127
+
128
+
129
+ if __name__ == "__main__":
130
+ extract_kitti(
131
+ root="path/to/KITTI/raw_data",
132
+ depth_root="path/to/KITTI/data_depth_annotated/val",
133
+ saved_rgb_dir="./benchmark/datasets/",
134
+ saved_disp_dir="./benchmark/datasets/",
135
+ csv_save_path=f"./benchmark/datasets/KITTI.csv",
136
+ sample_len=-1,
137
+ datatset_name="KITTI",
138
+ start_frame=0,
139
+ end_frame=110,
140
+ )
benchmark/dataset_extract/dataset_extract_nyu.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import os.path as osp
4
+ from PIL import Image
5
+ from tqdm import tqdm
6
+ import csv
7
+ import imageio
8
+
9
+
10
+ def _read_image(img_rel_path) -> np.ndarray:
11
+ image_to_read = img_rel_path
12
+ image = Image.open(image_to_read)
13
+ image = np.asarray(image)
14
+ return image
15
+
16
+
17
+ def depth_read(filename):
18
+ depth_in = _read_image(filename)
19
+ depth_decoded = depth_in / 1000.0
20
+ return depth_decoded
21
+
22
+
23
+ def extract_nyu(
24
+ root,
25
+ depth_root,
26
+ csv_save_path="",
27
+ datatset_name="",
28
+ filename_ls_path="",
29
+ saved_rgb_dir="",
30
+ saved_disp_dir="",
31
+ ):
32
+ with open(filename_ls_path, "r") as f:
33
+ filenames = [s.split() for s in f.readlines()]
34
+
35
+ all_samples = []
36
+ for i, pair_names in enumerate(tqdm(filenames)):
37
+ img_name = pair_names[0]
38
+ filled_depth_name = pair_names[2]
39
+
40
+ im_path = osp.join(root, img_name)
41
+ depth_path = osp.join(depth_root, filled_depth_name)
42
+
43
+ depth = depth_read(depth_path)
44
+ disp = depth
45
+
46
+ video_depths = [disp]
47
+ video_imgs = [np.array(Image.open(im_path))]
48
+
49
+ disp_video = np.array(video_depths)[:, None]
50
+ img_video = np.array(video_imgs)[..., 0:3]
51
+
52
+ disp_video = disp_video[:, :, 45:471, 41:601]
53
+ img_video = img_video[:, 45:471, 41:601, :]
54
+
55
+ data_root = saved_rgb_dir + datatset_name
56
+ disp_root = saved_disp_dir + datatset_name
57
+ os.makedirs(data_root, exist_ok=True)
58
+ os.makedirs(disp_root, exist_ok=True)
59
+
60
+ img_video_dir = data_root
61
+ disp_video_dir = disp_root
62
+
63
+ img_video_path = os.path.join(img_video_dir, f"{img_name[:-4]}_rgb_left.mp4")
64
+ disp_video_path = os.path.join(disp_video_dir, f"{img_name[:-4]}_disparity.npz")
65
+
66
+ dir_name = os.path.dirname(img_video_path)
67
+ os.makedirs(dir_name, exist_ok=True)
68
+ dir_name = os.path.dirname(disp_video_path)
69
+ os.makedirs(dir_name, exist_ok=True)
70
+
71
+ imageio.mimsave(
72
+ img_video_path, img_video, fps=15, quality=10, macro_block_size=1
73
+ )
74
+ np.savez(disp_video_path, disparity=disp_video)
75
+
76
+ sample = {}
77
+ sample["filepath_left"] = os.path.join(
78
+ f"{datatset_name}/{img_name[:-4]}_rgb_left.mp4"
79
+ )
80
+ sample["filepath_disparity"] = os.path.join(
81
+ f"{datatset_name}/{img_name[:-4]}_disparity.npz"
82
+ )
83
+
84
+ all_samples.append(sample)
85
+
86
+ filename_ = csv_save_path
87
+ os.makedirs(os.path.dirname(filename_), exist_ok=True)
88
+ fields = ["filepath_left", "filepath_disparity"]
89
+ with open(filename_, "w") as csvfile:
90
+ writer = csv.DictWriter(csvfile, fieldnames=fields)
91
+ writer.writeheader()
92
+ writer.writerows(all_samples)
93
+
94
+ print(f"{filename_} has been saved.")
95
+
96
+
97
+ if __name__ == "__main__":
98
+ extract_nyu(
99
+ root="path/to/NYUv2/",
100
+ depth_root="path/to/NYUv2/",
101
+ filename_ls_path="path/to/NYUv2/filename_list_test.txt",
102
+ saved_rgb_dir="./benchmark/datasets/",
103
+ saved_disp_dir="./benchmark/datasets/",
104
+ csv_save_path=f"./benchmark/datasets/NYUv2.csv",
105
+ datatset_name="NYUv2",
106
+ )
benchmark/dataset_extract/dataset_extract_scannet.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import os.path as osp
4
+ from PIL import Image
5
+ from tqdm import tqdm
6
+ import csv
7
+ import imageio
8
+
9
+
10
+ def _read_image(img_rel_path) -> np.ndarray:
11
+ image_to_read = img_rel_path
12
+ image = Image.open(image_to_read) # [H, W, rgb]
13
+ image = np.asarray(image)
14
+ return image
15
+
16
+
17
+ def depth_read(filename):
18
+ depth_in = _read_image(filename)
19
+ depth_decoded = depth_in / 1000.0
20
+ return depth_decoded
21
+
22
+
23
+ def extract_scannet(
24
+ root,
25
+ sample_len=-1,
26
+ csv_save_path="",
27
+ datatset_name="",
28
+ scene_number=16,
29
+ scene_frames_len=120,
30
+ stride=1,
31
+ saved_rgb_dir="",
32
+ saved_disp_dir="",
33
+ ):
34
+ scenes_names = os.listdir(root)
35
+ scenes_names = sorted(scenes_names)[:scene_number]
36
+ all_samples = []
37
+ for i, seq_name in enumerate(tqdm(scenes_names)):
38
+ all_img_names = os.listdir(osp.join(root, seq_name, "color"))
39
+ all_img_names = [x for x in all_img_names if x.endswith(".jpg")]
40
+ all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0]))
41
+ all_img_names = all_img_names[:scene_frames_len:stride]
42
+ print(f"sequence frame number: {len(all_img_names)}")
43
+
44
+ seq_len = len(all_img_names)
45
+ step = sample_len if sample_len > 0 else seq_len
46
+
47
+ for ref_idx in range(0, seq_len, step):
48
+ print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
49
+
50
+ video_imgs = []
51
+ video_depths = []
52
+
53
+ if (ref_idx + step) <= seq_len:
54
+ ref_e = ref_idx + step
55
+ else:
56
+ continue
57
+
58
+ for idx in range(ref_idx, ref_e):
59
+ im_path = osp.join(root, seq_name, "color", all_img_names[idx])
60
+ depth_path = osp.join(
61
+ root, seq_name, "depth", all_img_names[idx][:-3] + "png"
62
+ )
63
+
64
+ depth = depth_read(depth_path)
65
+ disp = depth
66
+
67
+ video_depths.append(disp)
68
+ video_imgs.append(np.array(Image.open(im_path)))
69
+
70
+ disp_video = np.array(video_depths)[:, None]
71
+ img_video = np.array(video_imgs)[..., 0:3]
72
+
73
+ disp_video = disp_video[:, :, 8:-8, 11:-11]
74
+ img_video = img_video[:, 8:-8, 11:-11, :]
75
+
76
+ data_root = saved_rgb_dir + datatset_name
77
+ disp_root = saved_disp_dir + datatset_name
78
+ os.makedirs(data_root, exist_ok=True)
79
+ os.makedirs(disp_root, exist_ok=True)
80
+
81
+ img_video_dir = data_root
82
+ disp_video_dir = disp_root
83
+
84
+ img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
85
+ disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
86
+
87
+ imageio.mimsave(
88
+ img_video_path, img_video, fps=15, quality=9, macro_block_size=1
89
+ )
90
+ np.savez(disp_video_path, disparity=disp_video)
91
+
92
+ sample = {}
93
+ sample["filepath_left"] = os.path.join(
94
+ f"{datatset_name}/{seq_name}_rgb_left.mp4"
95
+ )
96
+ sample["filepath_disparity"] = os.path.join(
97
+ f"{datatset_name}/{seq_name}_disparity.npz"
98
+ )
99
+
100
+ all_samples.append(sample)
101
+
102
+ filename_ = csv_save_path
103
+ os.makedirs(os.path.dirname(filename_), exist_ok=True)
104
+ fields = ["filepath_left", "filepath_disparity"]
105
+ with open(filename_, "w") as csvfile:
106
+ writer = csv.DictWriter(csvfile, fieldnames=fields)
107
+ writer.writeheader()
108
+ writer.writerows(all_samples)
109
+
110
+ print(f"{filename_} has been saved.")
111
+
112
+
113
+ if __name__ == "__main__":
114
+ extract_scannet(
115
+ root="path/to/ScanNet_v2/raw/scans_test",
116
+ saved_rgb_dir="./benchmark/datasets/",
117
+ saved_disp_dir="./benchmark/datasets/",
118
+ csv_save_path=f"./benchmark/datasets/scannet.csv",
119
+ sample_len=-1,
120
+ datatset_name="scannet",
121
+ scene_number=100,
122
+ scene_frames_len=90 * 3,
123
+ stride=3,
124
+ )
benchmark/dataset_extract/dataset_extract_sintel.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ # # Data loading based on https://github.com/NVIDIA/flownet2-pytorch
7
+
8
+
9
+ import os
10
+ import numpy as np
11
+ import os.path as osp
12
+ from PIL import Image
13
+ from tqdm import tqdm
14
+ import csv
15
+ import imageio
16
+
17
+
18
+ # Check for endianness, based on Daniel Scharstein's optical flow code.
19
+ # Using little-endian architecture, these two should be equal.
20
+ TAG_FLOAT = 202021.25
21
+ TAG_CHAR = "PIEH"
22
+
23
+
24
+ def depth_read(filename):
25
+ """Read depth data from file, return as numpy array."""
26
+ f = open(filename, "rb")
27
+ check = np.fromfile(f, dtype=np.float32, count=1)[0]
28
+ assert (
29
+ check == TAG_FLOAT
30
+ ), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
31
+ TAG_FLOAT, check
32
+ )
33
+ width = np.fromfile(f, dtype=np.int32, count=1)[0]
34
+ height = np.fromfile(f, dtype=np.int32, count=1)[0]
35
+ size = width * height
36
+ assert (
37
+ width > 0 and height > 0 and size > 1 and size < 100000000
38
+ ), " depth_read:: Wrong input size (width = {0}, height = {1}).".format(
39
+ width, height
40
+ )
41
+ depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
42
+ return depth
43
+
44
+
45
+ def extract_sintel(
46
+ root,
47
+ depth_root,
48
+ sample_len=-1,
49
+ csv_save_path="",
50
+ datatset_name="",
51
+ saved_rgb_dir="",
52
+ saved_disp_dir="",
53
+ ):
54
+ scenes_names = os.listdir(root)
55
+ all_samples = []
56
+ for i, seq_name in enumerate(tqdm(scenes_names)):
57
+ all_img_names = os.listdir(os.path.join(root, seq_name))
58
+ all_img_names = [x for x in all_img_names if x.endswith(".png")]
59
+ all_img_names.sort()
60
+ all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
61
+
62
+ seq_len = len(all_img_names)
63
+ step = sample_len if sample_len > 0 else seq_len
64
+
65
+ for ref_idx in range(0, seq_len, step):
66
+ print(f"Progress: {seq_name}, {ref_idx // step} / {seq_len // step}")
67
+
68
+ video_imgs = []
69
+ video_depths = []
70
+
71
+ if (ref_idx + step) <= seq_len:
72
+ ref_e = ref_idx + step
73
+ else:
74
+ continue
75
+
76
+ for idx in range(ref_idx, ref_e):
77
+ im_path = osp.join(root, seq_name, all_img_names[idx])
78
+ depth_path = osp.join(
79
+ depth_root, seq_name, all_img_names[idx][:-3] + "dpt"
80
+ )
81
+
82
+ depth = depth_read(depth_path)
83
+ disp = depth
84
+
85
+ video_depths.append(disp)
86
+ video_imgs.append(np.array(Image.open(im_path)))
87
+
88
+ disp_video = np.array(video_depths)[:, None]
89
+ img_video = np.array(video_imgs)[..., 0:3]
90
+
91
+ data_root = saved_rgb_dir + datatset_name
92
+ disp_root = saved_disp_dir + datatset_name
93
+ os.makedirs(data_root, exist_ok=True)
94
+ os.makedirs(disp_root, exist_ok=True)
95
+
96
+ img_video_dir = data_root
97
+ disp_video_dir = disp_root
98
+
99
+ img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
100
+ disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
101
+
102
+ imageio.mimsave(
103
+ img_video_path, img_video, fps=15, quality=10, macro_block_size=1
104
+ )
105
+ np.savez(disp_video_path, disparity=disp_video)
106
+
107
+ sample = {}
108
+ sample["filepath_left"] = os.path.join(
109
+ f"{datatset_name}/{seq_name}_rgb_left.mp4"
110
+ )
111
+ sample["filepath_disparity"] = os.path.join(
112
+ f"{datatset_name}/{seq_name}_disparity.npz"
113
+ )
114
+
115
+ all_samples.append(sample)
116
+
117
+ filename_ = csv_save_path
118
+ os.makedirs(os.path.dirname(filename_), exist_ok=True)
119
+ fields = ["filepath_left", "filepath_disparity"]
120
+ with open(filename_, "w") as csvfile:
121
+ writer = csv.DictWriter(csvfile, fieldnames=fields)
122
+ writer.writeheader()
123
+ writer.writerows(all_samples)
124
+
125
+ print(f"{filename_} has been saved.")
126
+
127
+
128
+ if __name__ == "__main__":
129
+ extract_sintel(
130
+ root="path/to/Sintel-Depth/training_image/clean",
131
+ depth_root="path/to/Sintel-Depth/MPI-Sintel-depth-training-20150305/training/depth",
132
+ saved_rgb_dir="./benchmark/datasets/",
133
+ saved_disp_dir="./benchmark/datasets/",
134
+ csv_save_path=f"./benchmark/datasets/sintel.csv",
135
+ sample_len=-1,
136
+ datatset_name="sintel",
137
+ )
benchmark/demo.sh ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/sh
2
+ set -x
3
+ set -e
4
+
5
+ test_case=$1
6
+ gpu_id=$2
7
+ process_length=$3
8
+ saved_root=$4
9
+ saved_dataset_folder=$5
10
+ overlap=$6
11
+ dataset=$7
12
+
13
+ CUDA_VISIBLE_DEVICES=${gpu_id} PYTHONPATH=. python run.py \
14
+ --video-path ${test_case} \
15
+ --save-folder ${saved_root}/${saved_dataset_folder} \
16
+ --process-length ${process_length} \
17
+ --dataset ${dataset} \
18
+ --overlap ${overlap}
benchmark/eval/eval.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import os
3
+ import torch
4
+ import cv2
5
+ import csv
6
+ from metric import *
7
+ import metric
8
+ import argparse
9
+ from tqdm import tqdm
10
+ import json
11
+
12
+
13
+ device = 'cuda'
14
+ eval_metrics = [
15
+ "abs_relative_difference",
16
+ "rmse_linear",
17
+ "delta1_acc",
18
+ # "squared_relative_difference",
19
+ # "rmse_log",
20
+ # "log10",
21
+ # "delta2_acc",
22
+ # "delta3_acc",
23
+ # "i_rmse",
24
+ # "silog_rmse",
25
+ ]
26
+
27
+
28
+ def depth2disparity(depth, return_mask=False):
29
+ if isinstance(depth, torch.Tensor):
30
+ disparity = torch.zeros_like(depth)
31
+ elif isinstance(depth, np.ndarray):
32
+ disparity = np.zeros_like(depth)
33
+ non_negtive_mask = depth > 0
34
+ disparity[non_negtive_mask] = 1.0 / depth[non_negtive_mask]
35
+ if return_mask:
36
+ return disparity, non_negtive_mask
37
+ else:
38
+ return disparity
39
+
40
+
41
+ def resize_images(images, new_size):
42
+ resized_images = np.empty(
43
+ (images.shape[0], new_size[0], new_size[1], images.shape[3])
44
+ )
45
+
46
+ for i, image in enumerate(images):
47
+ if image.shape[2]==1:
48
+ resized_images[i] = cv2.resize(image, (new_size[1], new_size[0]))[..., None]
49
+ else:
50
+ resized_images[i] = cv2.resize(image, (new_size[1], new_size[0]))
51
+
52
+ return resized_images
53
+
54
+
55
+ def eval_single(
56
+ pred_disp_path,
57
+ gt_disp_path,
58
+ seq_len=98,
59
+ domain='depth',
60
+ method_type="ours",
61
+ dataset_max_depth="70"
62
+ ):
63
+ # load data
64
+ gt_disp = np.load(gt_disp_path)['disparity'] \
65
+ if 'disparity' in np.load(gt_disp_path).files else \
66
+ np.load(gt_disp_path)['arr_0'] # (t, 1, h, w)
67
+
68
+ if method_type=="ours":
69
+ pred_disp = np.load(pred_disp_path)['depth'] # (t, h, w)
70
+ if method_type=="depth_anything":
71
+ pred_disp = np.load(pred_disp_path)['disparity'] # (t, h, w)
72
+
73
+ # seq_len
74
+ if pred_disp.shape[0] < seq_len:
75
+ seq_len = pred_disp.shape[0]
76
+
77
+ # preprocess
78
+ pred_disp = resize_images(pred_disp[..., None], (gt_disp.shape[-2], gt_disp.shape[-1])) # (t, h, w)
79
+ pred_disp = pred_disp[..., 0] # (t, h, w)
80
+ pred_disp = pred_disp[:seq_len]
81
+ gt_disp = gt_disp[:seq_len, 0] # (t, h, w)
82
+
83
+ # valid mask
84
+ valid_mask = np.logical_and(
85
+ (gt_disp > 1e-3),
86
+ (gt_disp < dataset_max_depth)
87
+ )
88
+ pred_disp = np.clip(pred_disp, a_min=1e-3, a_max=None)
89
+ pred_disp_masked = pred_disp[valid_mask].reshape((-1, 1))
90
+
91
+ # choose evaluation domain
92
+ DOMAIN = domain
93
+ if DOMAIN=='disp':
94
+ # align in real disp, calc in disp
95
+ gt_disp_maksed = gt_disp[valid_mask].reshape((-1, 1)).astype(np.float64)
96
+ elif DOMAIN=='depth':
97
+ # align in disp = 1/depth, calc in depth
98
+ gt_disp_maksed = 1. / (gt_disp[valid_mask].reshape((-1, 1)).astype(np.float64) + 1e-8)
99
+ else:
100
+ pass
101
+
102
+
103
+ # calc scale and shift
104
+ _ones = np.ones_like(pred_disp_masked)
105
+ A = np.concatenate([pred_disp_masked, _ones], axis=-1)
106
+ X = np.linalg.lstsq(A, gt_disp_maksed, rcond=None)[0]
107
+ scale, shift = X # gt = scale * pred + shift
108
+
109
+ # align
110
+ aligned_pred = scale * pred_disp + shift
111
+ aligned_pred = np.clip(aligned_pred, a_min=1e-3, a_max=None)
112
+
113
+
114
+ # align in real disp, calc in disp
115
+ if DOMAIN=='disp':
116
+ pred_depth = aligned_pred
117
+ gt_depth = gt_disp
118
+ # align in disp = 1/depth, calc in depth
119
+ elif DOMAIN=='depth':
120
+ pred_depth = depth2disparity(aligned_pred)
121
+ gt_depth = gt_disp
122
+ else:
123
+ pass
124
+
125
+ # metric evaluation, clip to dataset min max
126
+ pred_depth = np.clip(
127
+ pred_depth, a_min=1e-3, a_max=dataset_max_depth
128
+ )
129
+
130
+ # evaluate metric
131
+ sample_metric = []
132
+ metric_funcs = [getattr(metric, _met) for _met in eval_metrics]
133
+
134
+ # Evaluate
135
+ sample_metric = []
136
+ pred_depth_ts = torch.from_numpy(pred_depth).to(device)
137
+ gt_depth_ts = torch.from_numpy(gt_depth).to(device)
138
+ valid_mask_ts = torch.from_numpy(valid_mask).to(device)
139
+
140
+ n = valid_mask.sum((-1, -2))
141
+ valid_frame = (n > 0)
142
+ pred_depth_ts = pred_depth_ts[valid_frame]
143
+ gt_depth_ts = gt_depth_ts[valid_frame]
144
+ valid_mask_ts = valid_mask_ts[valid_frame]
145
+
146
+ for met_func in metric_funcs:
147
+ _metric_name = met_func.__name__
148
+ _metric = met_func(pred_depth_ts, gt_depth_ts, valid_mask_ts).item()
149
+ sample_metric.append(_metric)
150
+
151
+ return sample_metric
152
+
153
+
154
+
155
+ if __name__=="__main__":
156
+ parser = argparse.ArgumentParser()
157
+
158
+ parser.add_argument(
159
+ "--seq_len",
160
+ type=int,
161
+ default=50,
162
+ help="Max video frame length for evaluation."
163
+ )
164
+
165
+ parser.add_argument(
166
+ "--domain",
167
+ type=str,
168
+ default="depth",
169
+ choices=["depth", "disp"],
170
+ help="Domain of metric calculation."
171
+ )
172
+
173
+ parser.add_argument(
174
+ "--method_type",
175
+ type=str,
176
+ default="ours",
177
+ choices=["ours", "depth_anything"],
178
+ help="Choose the methods."
179
+ )
180
+
181
+ parser.add_argument(
182
+ "--dataset_max_depth",
183
+ type=int,
184
+ default=70,
185
+ help="Dataset max depth clip."
186
+ )
187
+
188
+ parser.add_argument(
189
+ "--pred_disp_root",
190
+ type=str,
191
+ default="./demo_output",
192
+ help="Predicted output directory."
193
+ )
194
+
195
+ parser.add_argument(
196
+ "--gt_disp_root",
197
+ type=str,
198
+ required=True,
199
+ help="GT depth directory."
200
+ )
201
+
202
+ parser.add_argument(
203
+ "--dataset",
204
+ type=str,
205
+ required=True,
206
+ help="Choose the datasets."
207
+ )
208
+
209
+ parser.add_argument(
210
+ "--meta_path",
211
+ type=str,
212
+ required=True,
213
+ help="Path of test dataset csv file."
214
+ )
215
+
216
+
217
+ args = parser.parse_args()
218
+
219
+ SEQ_LEN = args.seq_len
220
+ method_type = args.method_type
221
+ if method_type == "ours":
222
+ pred_disp_root = os.path.join(args.pred_disp_root, f'results_{args.dataset}')
223
+ else:
224
+ # pred_disp_root = args.pred_disp_root
225
+ pred_disp_root = os.path.join(args.pred_disp_root, f'results_{args.dataset}')
226
+ domain = args.domain
227
+ dataset_max_depth = args.dataset_max_depth
228
+ saved_json_path = os.path.join(args.pred_disp_root, f"results_{args.dataset}.json")
229
+
230
+ meta_path = args.meta_path
231
+
232
+ assert method_type in ["depth_anything", "ours"], "Invalid method type, must be in ['depth_anything', 'ours']"
233
+ assert domain in ["depth", "disp"], "Invalid domain type, must be in ['depth', 'disp']"
234
+
235
+ with open(meta_path, mode="r", encoding="utf-8") as csvfile:
236
+ csv_reader = csv.DictReader(csvfile)
237
+ samples = list(csv_reader)
238
+
239
+ # iterate all cases
240
+ results_all = []
241
+ for i, sample in enumerate(tqdm(samples)):
242
+ gt_disp_path = os.path.join(args.gt_disp_root, samples[i]['filepath_disparity'])
243
+ if method_type=="ours":
244
+ pred_disp_path = os.path.join(pred_disp_root, samples[i]['filepath_disparity'])
245
+ pred_disp_path = pred_disp_path.replace("disparity", "rgb_left")
246
+
247
+ if method_type=="depth_anything":
248
+ pred_disp_path = os.path.join(pred_disp_root, samples[i]['filepath_disparity'])
249
+ pred_disp_path = pred_disp_path.replace("disparity", "rgb_left_depth")
250
+
251
+ results_single = eval_single(
252
+ pred_disp_path,
253
+ gt_disp_path,
254
+ seq_len=SEQ_LEN,
255
+ domain=domain,
256
+ method_type=method_type,
257
+ dataset_max_depth=dataset_max_depth
258
+ )
259
+
260
+ results_all.append(results_single)
261
+
262
+ # avarage
263
+ final_results = np.array(results_all)
264
+ final_results_mean = np.mean(final_results, axis=0)
265
+ print("")
266
+
267
+ # save mean to json
268
+ result_dict = { 'name': method_type }
269
+ for i, metric in enumerate(eval_metrics):
270
+ result_dict[metric] = final_results_mean[i]
271
+ print(f"{metric}: {final_results_mean[i]:04f}")
272
+
273
+ # save each case to json
274
+ for i, results in enumerate(results_all):
275
+ result_dict[samples[i]['filepath_disparity']] = results
276
+
277
+ # write json
278
+ with open(saved_json_path, 'w') as f:
279
+ json.dump(result_dict, f, indent=4)
280
+ print("")
281
+ print(f"Evaluation results json are saved to {saved_json_path}")
282
+
benchmark/eval/eval.sh ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/sh
2
+ set -x
3
+ set -e
4
+
5
+ pred_disp_root=/path/to/saved/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] prediction
6
+ gt_disp_root=/path/to/gt_depth/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] ground truth
7
+
8
+ # eval sintel
9
+ python benchmark/eval/eval.py \
10
+ --meta_path ./eval/csv/meta_sintel.csv \
11
+ --dataset_max_depth 70 \
12
+ --dataset sintel \
13
+ --seq_len 50 \
14
+ --pred_disp_root ${pred_disp_root} \
15
+ --gt_disp_root ${gt_disp_root} \
16
+
17
+ # eval scannet
18
+ python benchmark/eval/eval.py \
19
+ --meta_path ./eval/csv/meta_scannet_test.csv \
20
+ --dataset_max_depth 10 \
21
+ --dataset scannet \
22
+ --seq_len 90 \
23
+ --pred_disp_root ${pred_disp_root} \
24
+ --gt_disp_root ${gt_disp_root} \
25
+
26
+ # eval kitti
27
+ python benchmark/eval/eval.py \
28
+ --meta_path ./eval/csv/meta_kitti_val.csv \
29
+ --dataset_max_depth 80 \
30
+ --dataset kitti \
31
+ --seq_len 110 \
32
+ --pred_disp_root ${pred_disp_root} \
33
+ --gt_disp_root ${gt_disp_root} \
34
+
35
+ # eval bonn
36
+ python benchmark/eval/eval.py \
37
+ --meta_path ./eval/csv/meta_bonn.csv \
38
+ --dataset_max_depth 10 \
39
+ --dataset bonn \
40
+ --seq_len 110 \
41
+ --pred_disp_root ${pred_disp_root} \
42
+ --gt_disp_root ${gt_disp_root} \
43
+
44
+ # eval nyu
45
+ python benchmark/eval/eval.py \
46
+ --meta_path ./eval/csv/meta_nyu_test.csv \
47
+ --dataset_max_depth 10 \
48
+ --dataset nyu \
49
+ --seq_len 1 \
50
+ --pred_disp_root ${pred_disp_root} \
51
+ --gt_disp_root ${gt_disp_root} \
benchmark/eval/metric.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def abs_relative_difference(output, target, valid_mask=None):
5
+ actual_output = output
6
+ actual_target = target
7
+ abs_relative_diff = torch.abs(actual_output - actual_target) / actual_target
8
+ if valid_mask is not None:
9
+ abs_relative_diff[~valid_mask] = 0
10
+ n = valid_mask.sum((-1, -2))
11
+ else:
12
+ n = output.shape[-1] * output.shape[-2]
13
+ abs_relative_diff = torch.sum(abs_relative_diff, (-1, -2)) / n
14
+ return abs_relative_diff.mean()
15
+
16
+
17
+ def squared_relative_difference(output, target, valid_mask=None):
18
+ actual_output = output
19
+ actual_target = target
20
+ square_relative_diff = (
21
+ torch.pow(torch.abs(actual_output - actual_target), 2) / actual_target
22
+ )
23
+ if valid_mask is not None:
24
+ square_relative_diff[~valid_mask] = 0
25
+ n = valid_mask.sum((-1, -2))
26
+ else:
27
+ n = output.shape[-1] * output.shape[-2]
28
+ square_relative_diff = torch.sum(square_relative_diff, (-1, -2)) / n
29
+ return square_relative_diff.mean()
30
+
31
+
32
+ def rmse_linear(output, target, valid_mask=None):
33
+ actual_output = output
34
+ actual_target = target
35
+ diff = actual_output - actual_target
36
+ if valid_mask is not None:
37
+ diff[~valid_mask] = 0
38
+ n = valid_mask.sum((-1, -2))
39
+ else:
40
+ n = output.shape[-1] * output.shape[-2]
41
+ diff2 = torch.pow(diff, 2)
42
+ mse = torch.sum(diff2, (-1, -2)) / n
43
+ rmse = torch.sqrt(mse)
44
+ return rmse.mean()
45
+
46
+
47
+ def rmse_log(output, target, valid_mask=None):
48
+ diff = torch.log(output) - torch.log(target)
49
+ if valid_mask is not None:
50
+ diff[~valid_mask] = 0
51
+ n = valid_mask.sum((-1, -2))
52
+ else:
53
+ n = output.shape[-1] * output.shape[-2]
54
+ diff2 = torch.pow(diff, 2)
55
+ mse = torch.sum(diff2, (-1, -2)) / n # [B]
56
+ rmse = torch.sqrt(mse)
57
+ return rmse.mean()
58
+
59
+
60
+ def log10(output, target, valid_mask=None):
61
+ if valid_mask is not None:
62
+ diff = torch.abs(
63
+ torch.log10(output[valid_mask]) - torch.log10(target[valid_mask])
64
+ )
65
+ else:
66
+ diff = torch.abs(torch.log10(output) - torch.log10(target))
67
+ return diff.mean()
68
+
69
+
70
+ # adapt from: https://github.com/imran3180/depth-map-prediction/blob/master/main.py
71
+ def threshold_percentage(output, target, threshold_val, valid_mask=None):
72
+ d1 = output / target
73
+ d2 = target / output
74
+ max_d1_d2 = torch.max(d1, d2)
75
+ zero = torch.zeros(*output.shape)
76
+ one = torch.ones(*output.shape)
77
+ bit_mat = torch.where(max_d1_d2.cpu() < threshold_val, one, zero)
78
+ if valid_mask is not None:
79
+ bit_mat[~valid_mask] = 0
80
+ n = valid_mask.sum((-1, -2))
81
+ else:
82
+ n = output.shape[-1] * output.shape[-2]
83
+ count_mat = torch.sum(bit_mat, (-1, -2))
84
+ threshold_mat = count_mat / n.cpu()
85
+ return threshold_mat.mean()
86
+
87
+
88
+ def delta1_acc(pred, gt, valid_mask):
89
+ return threshold_percentage(pred, gt, 1.25, valid_mask)
90
+
91
+
92
+ def delta2_acc(pred, gt, valid_mask):
93
+ return threshold_percentage(pred, gt, 1.25**2, valid_mask)
94
+
95
+
96
+ def delta3_acc(pred, gt, valid_mask):
97
+ return threshold_percentage(pred, gt, 1.25**3, valid_mask)
98
+
99
+
100
+ def i_rmse(output, target, valid_mask=None):
101
+ output_inv = 1.0 / output
102
+ target_inv = 1.0 / target
103
+ diff = output_inv - target_inv
104
+ if valid_mask is not None:
105
+ diff[~valid_mask] = 0
106
+ n = valid_mask.sum((-1, -2))
107
+ else:
108
+ n = output.shape[-1] * output.shape[-2]
109
+ diff2 = torch.pow(diff, 2)
110
+ mse = torch.sum(diff2, (-1, -2)) / n # [B]
111
+ rmse = torch.sqrt(mse)
112
+ return rmse.mean()
113
+
114
+
115
+ def silog_rmse(depth_pred, depth_gt, valid_mask=None):
116
+ diff = torch.log(depth_pred) - torch.log(depth_gt)
117
+ if valid_mask is not None:
118
+ diff[~valid_mask] = 0
119
+ n = valid_mask.sum((-1, -2))
120
+ else:
121
+ n = depth_gt.shape[-2] * depth_gt.shape[-1]
122
+
123
+ diff2 = torch.pow(diff, 2)
124
+
125
+ first_term = torch.sum(diff2, (-1, -2)) / n
126
+ second_term = torch.pow(torch.sum(diff, (-1, -2)), 2) / (n**2)
127
+ loss = torch.sqrt(torch.mean(first_term - second_term)) * 100
128
+ return loss
benchmark/infer/infer.sh ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/sh
2
+ set -x
3
+ set -e
4
+
5
+ input_rgb_root=/path/to/input/RGB/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] input RGB
6
+ saved_root=/path/to/saved/root_directory # The parent directory that saving [sintel, scannet, KITTI, bonn, NYUv2] prediction
7
+ gpus=0,1,2,3 # Using 4 GPU, you can adjust it according to your device
8
+
9
+
10
+ # infer sintel
11
+ python benchmark/infer/infer_batch.py \
12
+ --meta_path ./eval/csv/meta_sintel.csv \
13
+ --saved_root ${saved_root} \
14
+ --saved_dataset_folder results_sintel \
15
+ --process_length 50 \
16
+ --gpus ${gpus} \
17
+ --dataset sintel \
18
+
19
+ # infer scannet
20
+ python benchmark/infer/infer_batch.py \
21
+ --meta_path ./eval/csv/meta_scannet_test.csv \
22
+ --saved_root ${saved_root} \
23
+ --saved_dataset_folder results_scannet \
24
+ --process_length 90 \
25
+ --gpus ${gpus} \
26
+ --dataset scannet \
27
+
28
+ # infer kitti
29
+ python benchmark/infer/infer_batch.py \
30
+ --meta_path ./eval/csv/meta_kitti_val.csv \
31
+ --saved_root ${saved_root} \
32
+ --saved_dataset_folder results_kitti \
33
+ --process_length 110 \
34
+ --gpus ${gpus} \
35
+ --dataset kitti \
36
+
37
+ # infer bonn
38
+ python benchmark/infer/infer_batch.py \
39
+ --meta_path ./eval/csv/meta_bonn.csv \
40
+ --saved_root ${saved_root} \
41
+ --saved_dataset_folder results_bonn \
42
+ --input_rgb_root ${input_rgb_root} \
43
+ --process_length 110 \
44
+ --gpus ${gpus} \
45
+ --dataset bonn \
46
+
47
+ # infer nyu
48
+ python benchmark/infer/infer_batch.py \
49
+ --meta_path ./eval/csv/meta_nyu_test.csv \
50
+ --saved_root ${saved_root} \
51
+ --saved_dataset_folder results_nyu \
52
+ --process_length 1 \
53
+ --gpus ${gpus} \
54
+ --overlap 0 \
55
+ --dataset nyu \
benchmark/infer/infer_batch.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import multiprocessing as mp
3
+ import csv
4
+ import argparse
5
+
6
+
7
+ def process_video(video_path, gpu_id, save_folder, args):
8
+ os.system(f'sh ./benchmark/demo.sh {video_path} {gpu_id} {int(args.process_length)} {args.saved_root} {save_folder} {args.overlap} {args.dataset}')
9
+
10
+ if __name__ == '__main__':
11
+
12
+ parser = argparse.ArgumentParser()
13
+
14
+ parser.add_argument('--meta_path', type=str)
15
+ parser.add_argument('--saved_dataset_folder', type=str)
16
+ parser.add_argument('--saved_root', type=str, default="./output")
17
+ parser.add_argument('--input_rgb_root', type=str)
18
+
19
+ parser.add_argument('--process_length', type=int, default=110)
20
+ parser.add_argument('--gpus', type=str, default="0,1,2,3")
21
+
22
+ parser.add_argument('--overlap', type=int, default=1)
23
+ parser.add_argument('--dataset', type=str, default="open")
24
+
25
+ args = parser.parse_args()
26
+ gpus = args.gpus.strip().split(',')
27
+
28
+ with open(args.meta_path, mode="r", encoding="utf-8") as csvfile:
29
+ csv_reader = csv.DictReader(csvfile)
30
+ test_samples = list(csv_reader)
31
+ batch_size = len(gpus)
32
+ video_batches = [test_samples[i:i+batch_size] for i in range(0, len(test_samples), batch_size)]
33
+ print("gpus+++: ", gpus)
34
+
35
+ processes = []
36
+ for video_batch in video_batches:
37
+ for i, sample in enumerate(video_batch):
38
+ video_path = os.path.join(args.input_rgb_root, sample["filepath_left"])
39
+ save_folder = os.path.join(args.saved_dataset_folder, os.path.dirname(sample["filepath_left"]))
40
+ gpu_id = gpus[i % len(gpus)]
41
+ p = mp.Process(target=process_video, args=(video_path, gpu_id, save_folder, args))
42
+ p.start()
43
+ processes.append(p)
44
+
45
+ for p in processes:
46
+ p.join()