import gradio as gr import librosa import numpy as np import torch from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("tejas1206/speecht5_tts_technical_en") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speaker_embeddings = { "BDL": "speaker/cmu_us_bdl_arctic-wav-arctic_a0009.npy", "CLB": "speaker/cmu_us_clb_arctic-wav-arctic_a0144.npy", "KSP": "speaker/cmu_us_ksp_arctic-wav-arctic_b0087.npy", "RMS": "speaker/cmu_us_rms_arctic-wav-arctic_b0353.npy", "SLT": "speaker/cmu_us_slt_arctic-wav-arctic_a0508.npy", } def predict(text, speaker): if len(text.strip()) == 0: return (16000, np.zeros(0).astype(np.int16)) inputs = processor(text=text, return_tensors="pt") # limit input length input_ids = inputs["input_ids"] input_ids = input_ids[..., :model.config.max_text_positions] if speaker == "Surprise Me!": # load one of the provided speaker embeddings at random idx = np.random.randint(len(speaker_embeddings)) key = list(speaker_embeddings.keys())[idx] speaker_embedding = np.load(speaker_embeddings[key]) # randomly shuffle the elements np.random.shuffle(speaker_embedding) # randomly flip half the values x = (np.random.rand(512) >= 0.5) * 1.0 x[x == 0] = -1.0 speaker_embedding *= x #speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15 else: speaker_embedding = np.load(speaker_embeddings[speaker[:3]]) speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) speech = (speech.numpy() * 32767).astype(np.int16) return (16000, speech) title = "Text-to-Speech App using SpeechT5" gr.Interface( fn=predict, inputs=[ gr.Text(label="Input Text"), gr.Radio(label="Speaker", choices=[ "BDL (male)", "CLB (female)", "KSP (male)", "RMS (male)", "SLT (female)", "Surprise Me!" ], value="BDL (male)"), ], outputs=[ gr.Audio(label="Generated Speech", type="numpy"), ], title=title, ).launch()