Tejas1206
commited on
Commit
·
c755fa6
1
Parent(s):
294dbbc
app.py
Browse files- app.py +102 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import io
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from qwen_vl_utils import process_vision_info
|
7 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
8 |
+
|
9 |
+
def OCRmodel():
|
10 |
+
|
11 |
+
# default: Load the model on the available device(s)
|
12 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32)
|
13 |
+
# default processer
|
14 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
15 |
+
|
16 |
+
# Move the model to the correct device (GPU if available, otherwise CPU)
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
model.to(device)
|
19 |
+
|
20 |
+
return model, processor
|
21 |
+
|
22 |
+
model, processor = OCRmodel()
|
23 |
+
|
24 |
+
# Function to read the image and process it for OCR
|
25 |
+
def ocr(image_data):
|
26 |
+
"""
|
27 |
+
Process the uploaded image and extract text using the OCR model.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
image_data: Image data in bytes.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Extracted text as a string.
|
34 |
+
"""
|
35 |
+
text_query = "Extract all the text in Sanskrit and English from the image."
|
36 |
+
# Prepare messages for the model with the image
|
37 |
+
messages = [
|
38 |
+
{
|
39 |
+
"role": "user",
|
40 |
+
"content": [
|
41 |
+
{"type": "image", "image": image_data},
|
42 |
+
{"type": "text", "text": text_query}],
|
43 |
+
}
|
44 |
+
]
|
45 |
+
|
46 |
+
# Prepare text and image input for the model
|
47 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
48 |
+
image_inputs, _ = process_vision_info(messages)
|
49 |
+
|
50 |
+
# Process inputs
|
51 |
+
inputs = processor(
|
52 |
+
text=[text],
|
53 |
+
images=image_inputs,
|
54 |
+
padding=True,
|
55 |
+
return_tensors="pt"
|
56 |
+
)
|
57 |
+
inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu") # Move to GPU if available
|
58 |
+
|
59 |
+
# Generate the output from the model
|
60 |
+
with torch.no_grad():
|
61 |
+
# Inference: Generation of the output
|
62 |
+
generated_ids = model.generate(**inputs, max_new_tokens=2000, no_repeat_ngram_size=3, temperature=0.7)
|
63 |
+
generated_ids_trimmed = [
|
64 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
65 |
+
]
|
66 |
+
output_text = processor.batch_decode(
|
67 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
68 |
+
)
|
69 |
+
return " ".join(output_text).strip()
|
70 |
+
|
71 |
+
# Function to highlight search terms in the text
|
72 |
+
def highlight_keywords(text, keywords):
|
73 |
+
pattern = "|".join(re.escape(keyword) for keyword in keywords)
|
74 |
+
highlighted_text = re.sub(f"({pattern})", rf'<mark style="background-color:{"red"};">\1</mark>', text, flags=re.IGNORECASE)
|
75 |
+
return highlighted_text
|
76 |
+
|
77 |
+
# Gradio interface function
|
78 |
+
def process_image(image, search_query):
|
79 |
+
|
80 |
+
extracted_text = ocr(image)
|
81 |
+
|
82 |
+
if search_query:
|
83 |
+
# Highlight matching keywords
|
84 |
+
keywords = search_query.split() # Split input into individual keywords
|
85 |
+
highlighted_text = highlight_keywords(extracted_text, keywords)
|
86 |
+
else:
|
87 |
+
highlighted_text = extracted_text
|
88 |
+
|
89 |
+
return highlighted_text
|
90 |
+
|
91 |
+
# Gradio Interface
|
92 |
+
application = gr.Interface(
|
93 |
+
fn=process_image, # Function to process the image and search query
|
94 |
+
inputs=[
|
95 |
+
gr.Image(type="pil", label="Upload Image"), # Image input
|
96 |
+
gr.Textbox(label="Enter search keywords") # Textbox for search query
|
97 |
+
],
|
98 |
+
outputs=gr.HTML(label="Extracted and Highlighted Text") # Output area
|
99 |
+
)
|
100 |
+
|
101 |
+
# Launch the Gradio app
|
102 |
+
application.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
torch==2.4.1+cu121
|
3 |
+
torchvision==0.19.1+cu121
|
4 |
+
gradio==4.44.0
|
5 |
+
qwen-vl-utils==0.0.8
|
6 |
+
pillow==10.4.0
|