srgtuszy commited on
Commit
b4a15fa
·
1 Parent(s): c0f984c

Added chat interface

Browse files
Files changed (1) hide show
  1. app.py +21 -56
app.py CHANGED
@@ -1,63 +1,28 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct")
8
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ from huggingface_hub import login
3
  import gradio as gr
4
+ import torch
5
 
6
+ login(token = os.getenv('HF_TOKEN'))
 
 
 
7
 
8
+ # Load the tokenizer and model
9
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-11B-Vision-Instruct")
10
+ model = AutoModelForCausalLM.from_pretrained(
11
+ "meta-llama/Llama-3.2-11B-Vision-Instruct",
12
+ device_map="auto",
13
+ torch_dtype="auto",
14
+ )
15
 
16
+ def generate_response(message, history):
17
+ inputs = tokenizer(message['text'], return_tensors="pt").to("cpu")
18
+ with torch.no_grad():
19
+ outputs = model.generate(inputs.input_ids, max_length=100)
20
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
 
 
 
22
  demo = gr.ChatInterface(
23
+ fn=generate_response,
24
+ examples=[{"text": "Hello", "files": []}],
25
+ title="LLAMA 3.2 Chat",
26
+ multimodal=True
 
 
 
 
 
 
 
 
 
27
  )
28
+ demo.launch(debug = True)