import torch import torchaudio from sgmse.model import ScoreModel import gradio as gr from sgmse.util.other import pad_spec # Define the necessary arguments class Args: device = 'cpu' # or 'cuda' if GPU is available and enabled in the environment corrector = 'langevin' # Define your corrector method N = 50 # Example value for number of steps corrector_steps = 1 # Number of steps for the corrector snr = 0.1 # Signal-to-noise ratio value for the corrector pad_mode = 'reflect' # Pad mode for spectrogram padding args = Args() # Load the pre-trained model model = ScoreModel.load_from_checkpoint("https://huggingface.co./sp-uhh/speech-enhancement-sgmse/resolve/main/train_vb_29nqe0uh_epoch%3D115.ckpt") def enhance_speech(audio_file): # Load and process the audio file y, sr = torchaudio.load(audio_file) T_orig = y.size(1) # Normalize norm_factor = y.abs().max() y = y / norm_factor # Prepare DNN input Y = torch.unsqueeze(model._forward_transform(model._stft(y.to(args.device))), 0) Y = pad_spec(Y, mode=args.pad_mode) # Reverse sampling sampler = model.get_pc_sampler( 'reverse_diffusion', args.corrector, Y.to(args.device), N=args.N, corrector_steps=args.corrector_steps, snr=args.snr) sample, _ = sampler() # Backward transform in time domain x_hat = model.to_audio(sample.squeeze(), T_orig) # Renormalize x_hat = x_hat * norm_factor # Save the enhanced audio output_file = 'enhanced_output.wav' torchaudio.save(output_file, x_hat.cpu().numpy(), sr) return output_file # Gradio interface setup inputs = gr.Audio(label="Input Audio", type="filepath") outputs = gr.Audio(label="Output Audio", type="filepath") title = "Speech Enhancement using SGMSE" description = "This Gradio demo uses the SGMSE model for speech enhancement. Upload your audio file to enhance it." article = "

Model Card

" # Launch without share=True (as it's not supported on Hugging Face Spaces) gr.Interface(fn=enhance_speech, inputs=inputs, outputs=outputs, title=title, description=description, article=article).launch()