Shokoufehhh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,17 +3,13 @@ import torchaudio
|
|
3 |
from sgmse.model import ScoreModel
|
4 |
import gradio as gr
|
5 |
from sgmse.util.other import pad_spec
|
6 |
-
|
7 |
# Load the pre-trained model
|
8 |
-
model =
|
9 |
-
|
10 |
def enhance_speech(audio_file):
|
11 |
# Load and process the audio file
|
12 |
y, sr = torchaudio.load(audio_file)
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Normalize
|
17 |
norm_factor = y.abs().max()
|
18 |
y = y / norm_factor
|
19 |
|
@@ -29,8 +25,7 @@ def enhance_speech(audio_file):
|
|
29 |
|
30 |
# Backward transform in time domain
|
31 |
x_hat = model.to_audio(sample.squeeze(), T_orig)
|
32 |
-
|
33 |
-
# Renormalize
|
34 |
x_hat = x_hat * norm_factor
|
35 |
|
36 |
# Save the enhanced audio
|
@@ -38,13 +33,12 @@ def enhance_speech(audio_file):
|
|
38 |
torchaudio.save(output_file, x_hat.cpu().numpy(), sr)
|
39 |
|
40 |
return output_file
|
41 |
-
|
42 |
# Gradio interface setup
|
43 |
inputs = gr.Audio(label="Input Audio", type="filepath")
|
44 |
outputs = gr.Audio(label="Output Audio", type="filepath")
|
45 |
title = "Speech Enhancement using SGMSE"
|
46 |
description = "This Gradio demo uses the SGMSE model for speech enhancement. Upload your audio file to enhance it."
|
47 |
article = "<p style='text-align: center'><a href='https://huggingface.co/SP-UHH/speech-enhancement-sgmse' target='_blank'>Model Card</a></p>"
|
48 |
-
|
49 |
# Launch without share=True (as it's not supported on Hugging Face Spaces)
|
50 |
-
gr.Interface(fn=enhance_speech, inputs=inputs, outputs=outputs, title=title, description=description, article=article).launch(
|
|
|
|
3 |
from sgmse.model import ScoreModel
|
4 |
import gradio as gr
|
5 |
from sgmse.util.other import pad_spec
|
|
|
6 |
# Load the pre-trained model
|
7 |
+
model = ScoreModel.load_from_checkpoint("https://huggingface.co/sp-uhh/speech-enhancement-sgmse/resolve/main/train_vb_29nqe0uh_epoch%3D115.ckpt")
|
|
|
8 |
def enhance_speech(audio_file):
|
9 |
# Load and process the audio file
|
10 |
y, sr = torchaudio.load(audio_file)
|
11 |
+
T_orig = y.size(1)
|
12 |
+
# Normalize
|
|
|
|
|
13 |
norm_factor = y.abs().max()
|
14 |
y = y / norm_factor
|
15 |
|
|
|
25 |
|
26 |
# Backward transform in time domain
|
27 |
x_hat = model.to_audio(sample.squeeze(), T_orig)
|
28 |
+
# Renormalize
|
|
|
29 |
x_hat = x_hat * norm_factor
|
30 |
|
31 |
# Save the enhanced audio
|
|
|
33 |
torchaudio.save(output_file, x_hat.cpu().numpy(), sr)
|
34 |
|
35 |
return output_file
|
|
|
36 |
# Gradio interface setup
|
37 |
inputs = gr.Audio(label="Input Audio", type="filepath")
|
38 |
outputs = gr.Audio(label="Output Audio", type="filepath")
|
39 |
title = "Speech Enhancement using SGMSE"
|
40 |
description = "This Gradio demo uses the SGMSE model for speech enhancement. Upload your audio file to enhance it."
|
41 |
article = "<p style='text-align: center'><a href='https://huggingface.co/SP-UHH/speech-enhancement-sgmse' target='_blank'>Model Card</a></p>"
|
|
|
42 |
# Launch without share=True (as it's not supported on Hugging Face Spaces)
|
43 |
+
gr.Interface(fn=enhance_speech, inputs=inputs, outputs=outputs, title=title, description=description, article=article).launch(
|
44 |
+
|