import spaces import random import torch from huggingface_hub import snapshot_download from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel import gradio as gr import numpy as np device = "cuda" ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting") text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device) tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) pipe = StableDiffusionXLInpaintPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler ) pipe.to(device) pipe.enable_attention_slicing() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU def infer(prompt, image, mask_image = None, negative_prompt = "", seed = 0, randomize_seed = False, guidance_scale = 6.0, num_inference_steps = 25 ): if not isinstance(image, dict): image = dict({'background': image, 'layers': [mask_image]}) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) width, height = image['background'].size width = (width // 8 + 1) * 8 height = (height // 8 + 1) * 8 result = pipe( prompt = prompt, image = image['background'], mask_image = image['layers'][0], height=height, width=width, guidance_scale = guidance_scale, generator= generator, num_inference_steps= num_inference_steps, negative_prompt = negative_prompt, num_images_per_prompt = 1, strength = 0.999 ).images[0] return result examples = [ ["一只带着红色帽子的小猫咪,圆脸,大眼,极度可爱,高饱和度,立体,柔和的光线", "image/1.png", "image/1_masked.png"], ["这是一幅令人垂涎欲滴的火锅画面,各种美味的食材在翻滚的锅中煮着,散发出的热气和香气令人陶醉。火红的辣椒和鲜艳的辣椒油熠熠生辉,具有诱人的招人入胜之色彩。锅内肉质细腻的薄切牛肉、爽口的豆腐皮、鲍汁浓郁的金针菇、爽脆的蔬菜,融合在一起,营造出五彩斑斓的视觉呈现", "image/2.png", "image/2_masked.png"], ["穿着美少女战士的衣服,一件类似于水手服风格的衣服,包括一个白色紧身上衣,前胸搭配一个大大的红色蝴蝶结。衣服的领子部分呈蓝色,并且有白色条纹。她还穿着一条蓝色百褶裙,超高清,辛烷渲染,高级质感,32k,高分辨率,最好的质量,超级细节,景深", "image/3.png", "image/3_masked.png"], ["穿着钢铁侠的衣服,高科技盔甲,主要颜色为红色和金色,并且有一些银色装饰。胸前有一个亮起的圆形反应堆装置,充满了未来科技感。超清晰,高质量,超逼真,高分辨率,最好的质量,超级细节,景深", "image/4.png", "image/4_masked.png"], ] css=""" #col-left { margin: 0 auto; max-width: 600px; } #col-right { margin: 0 auto; max-width: 700px; } """ def load_description(fp): with open(fp, 'r', encoding='utf-8') as f: content = f.read() return content with gr.Blocks(css=css) as Kolors: gr.HTML(load_description("assets/title.md")) with gr.Row(): with gr.Column(elem_id="col-left"): with gr.Row(): prompt = gr.Textbox( label="Prompt", placeholder="Enter your prompt", lines=2 ) with gr.Row(): image = gr.ImageEditor(label='Image', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#AAAAAA"], color_mode="fixed")) mask_image = gr.Image(label='Mask_Example',type='pil', visible=False, value=None) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Textbox( label="Negative prompt", placeholder="Enter a negative prompt", value='残缺的手指,畸形的手指,畸形的手,残肢,模糊,低质量' ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=6.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=10, maximum=50, step=1, value=25, ) with gr.Row(): run_button = gr.Button("Run") with gr.Column(elem_id="col-right"): result = gr.Image(label="Result", show_label=False) with gr.Row(): gr.Examples( fn = infer, examples = examples, inputs = [prompt, image, mask_image], outputs = [result] ) run_button.click( fn = infer, inputs = [prompt, image, mask_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps], outputs = [result] ) Kolors.queue().launch(debug=True)