Spaces:
Running
Running
File size: 2,998 Bytes
eba354f 6933457 284ec80 6933457 1855007 284ec80 6933457 1855007 6933457 7dde1ca 6933457 7dde1ca 6933457 3f14f3b 6933457 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
title: README
emoji: ❤️
colorFrom: red
colorTo: red
sdk: static
pinned: false
---
SentenceTransformers 🤗 is a Python framework for state-of-the-art sentence, text and image embeddings.
Install the [Sentence Transformers](https://www.sbert.net/) library.
```
pip install -U sentence-transformers
```
The usage is as simple as:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Sentences we want to encode. Example:
sentence = ['This framework generates embeddings for each input sentence']
# Sentences are encoded by calling model.encode()
embedding = model.encode(sentence)
```
Hugging Face makes it easy to collaboratively build and showcase your [Sentence Transformers](https://www.sbert.net/) models! You can collaborate with your organization, upload and showcase your own models in your profile ❤️
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
<a href="https://www.sbert.net/" class="block overflow-hidden group">
<div
class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
>
<img alt="" src="https://huggingface.co./spaces/sentence-transformers/README/resolve/main/sbertLogo.png" class="w-40" />
</div>
<div class="underline">Documentation</div>
</a>
<a
href="https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.save_to_hub"
class="block overflow-hidden group"
>
<div
class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
>
<img
alt=""
src="https://huggingface.co./spaces/sentence-transformers/README/resolve/main/push-to-hub.png"
class="w-full h-40 object-cover overflow-hidden"
/>
</div>
<div class="underline">Push your Sentence Transformers models to the Hub ❤️ </div>
</a>
<a
href="https://huggingface.co./models?library=sentence-transformers&sort=downloads"
class="block overflow-hidden group"
>
<div
class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
>
<img
alt=""
src="https://huggingface.co./spaces/sentence-transformers/README/resolve/main/sbert-hf.png"
class="w-full h-40 object-cover overflow-hidden"
/>
</div>
<div class="underline">Find all Sentence Transformers models on the 🤗 Hub</div>
</a>
</div>
To upload your Sentence Transformers models to the Hugging Face Hub, log in with `huggingface-cli login` and use the [`save_to_hub`](https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.save_to_hub) method within the Sentence Transformers library.
```python
from sentence_transformers import SentenceTransformer
# Load or train a model
model = SentenceTransformer(...)
# Push to Hub
model.push_to_hub("my_new_model")
``` |